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H,2=D V3-8V T ,B+8VCQ,EZ.  (3.18)

(iii) Super Weyl transformations, forming a group
sWeyl(M). These are generated by a real scalar

superfield 2,
Ef=e*E4, ,
. (3.19)
Ef=e*[E 5 +E 4(y,)*PDp2],

and induce the following transformation laws on the su-
perconnection, supercurvature, and superderivatives:

Q=0+ Eige, "Dy 3+ B §1(5) Dy
R, =e R, —2iD.,D_3),

A~ (3.20)
Z)lze(rz —1/2)21) r;_e—nE ,
DN =g~ (nHL2ZHn o403
The infinitesimal form of Eq. (3.19) reads
H,’=638,% H,/P=1838F,
(3.21)

H,'=0, H,*=(y,)"Dg3 .

It will be useful to keep in mind that not all H’s are in-
dependent due to the torsion constraints (3.11). The sim-

plest set of independent deformations is H ++, H_—,
and H,% The other components can then be calculated
using the torsion constraints. To first order in H, we
have the general formula

8T 4pS=—H 4PTpp+T 45 °Hp +(— )P Hp T} ,
—D Hg+( =)Dy H ,“+ 4E5°
, —(—)YpE 4,
where ¢ , =E ,M8Q,,. These imply
H?=D ,H *+2H, *,
HZ =D H,?,
H+_:“%‘@+H—E’"%$—H+? 4

; . (3.22)
H~=D,H,~+ R, _H.’,

HY=D,H,*+D H_—+D_H, _+—;—R+”H_7 )

80, =—iD H *~iR, _H_ *+LD_H Q_—H, *Q_.

z

2. Supercomplex structures

By analogy with two-dimensional geometry we intro-

duce a supercomplex structure
IV =Ey e, BN+ Epy5) PEGY ., (3.23)

which is a super-reparametrization tensor, and a local
U(1) scalar. The main properties of J,," are

Iyt =—8,° (3.24)
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and the fact that it depends only on the superconformal
class of E 4™, i.e., it is invariant under the super Weyl
transformations of (iii).

The almost complex structure J,,Y of Eq. (3.23) may be
used to define complex or, in this case, superholomorphic
coordinates on the surface, provided this almost complex
structure is integrable. This is actually a consequence of
the superconformal flatness of two-dimensional super-
geometry. A direct check of integrability illustrating the
role of the torsion constraints is obtained by introducing
the following one-forms:

gM=dzM—idz"IM

— (3.25)
EM—=dzMidz "7 M .

&M by itself has only two independent components, in
view of Eq. (3.25). The almost complex structure J v is
integrable provided :

d¢M=0 (mod &) . (3.26)

Using the explicit expression for J, " in Eq. (3.23), as
well as the definition of the torsion TBCA of the N =1 su-
pergeometry, we get

d§M= _%_PEPZQ‘QEQ_(T—E+E+M+ T—EZEZM)
—LEPE,"E9E,(T__*E M+T__°E™)
(mod &), (3.27)

which indeed yields Eq. (3.26) with the help of the torsion
constraints (3.11) and their consequences (3.12). Con-
versely, a supergeometry will support a complex struc-
ture only when the above torsion constraints are satisfied..

Thus we may define superholomorphic and superan-
tiholomorphic functions by

INDNf=iDpf> I Dyf=—iDyf s (3.28)

or, equivalently,
D_f=0, $+f=0 .

The supersurface together with a supercomplex structure
JyN will be called a super Riemann surface, although
strictly speaking the geometry of the supersurface is not
Riemannian, i.e., there is no metric for superspace. One
can verify that a super Riemann surface admits an atlas
of coordinate patches whose transition functions are su-
perholomorphic. This approach provides an alternative
definition of a super Riemann surface.

3. Flat and conformally flat superspace
Flat N =1 superspace is given by the superzweibein

E,°=5,° E,*=0,

m

(3.29)

E,*=(y),%05 E,=8,",
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and the superderivatives take the simple form

.,‘Z)+=—§—+0—a—, D =459

36 5z -~ pos (3.30)

Equivalently, flat superspace 1is characterized by
R, _=0. Locally every supergeometry is superconfor-
mal [i.e., equivalent under a super Weyl and local U(1)
transformation] to flat supergeometry. One can easily see
this directly from the equations characterizing super-
reparametrizations and by using the analogous result for
ordinary geometry, or by evaluating the supercomplex
structure tensor J,,~ of Eq. (3.23). Locally, then, Eq.
(3.28) is solved by

f=rolz)+6f(2),

where f, and f, are holomorphic in the ordinary sense.

Globally, however, there may be topological obstruc-
tions, and it will be necessary to introduce supermoduli
space, i.e., the space of inequivalent superconformal
structures. We shall take up this issue in Secs. III.LE and
I11.G.

A complete local analysis of N =1 two-dimensional su-
pergravity is due to Howe (1979). In particular, the fact
that any two-dimensional supergeometry is locally super-
conformally flat is due to him. The superfield formalism
and variations H ,Z were used by Martinec (1983) to
‘compute the super Weyl anomaly. The supercomplex
structure J,,V was introduced by D’Hoker and Phong
(1987a), who also showed that its integrability (vanishing
of the Nijenhuis tensor) is a consequence of the Wess-
Zumino torsion constraints. Interpretations of Wess-
Zumino constraints as reductions of G structures were
subsequently given by Giddings and Nelson (1988a).

The alternative approach to super Riemann surfaces
through superholomorphic function theory and charts as
in Eq. (3.28) was developed by Friedan (1986), Baranov,
Frolov, and Schwarz (1987), and Crane and Rabin (1987).
That the two classes of super Riemann surfaces coincide
was proved by Giddings and Nelson (1988a).

C. Component formalism for N =1 supergravity

To obtain a better understanding of supergeometry and
supergravity, it should be useful to discuss the associated
component formulation. The passage from the superfield
to the component language requires the elimination of
the auxiliary fields required by the superfields. This is
usually accomplished by fixing the Wess-Zumino gauge
for the superzweibein. This gauge is defined by the con-
dition that in the expansion in powers of @ we have!!

a o Vv, *a a Vv, kkd
E, ~8# + 6% E# ~0 el

i
3.31)
*a __ _%a k%a __ *k%a
v =C€uvr €y =€uy >

!1This is the correct choice provided—as we have—the gam-
ma matrices are taken to be symmetric.
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up to higher-order terms. A superzweibein can always be
brought to this gauge by a super-reparametrization,
which is obtained through algebraic equations alone.
The main ingredients of the supergeometry can then be
derived from the Bianchi identities and the torsion con-
straints. The results for their full 6 expansions are

E,“=e, “+0y°X,, ——éG@em"A ,

E, "= —1X, "= 26y, )" A~ 16%y )fw,,
+i00[ Ly, ) PA— X% AT,

E,*=(y"),f6g, (3.32)

E,"=8,414i004/4),

sdetEy A=e 14 L0y™, — éeé A+160e™X,yX, |,

Where
J— anpq a 1 14

A=—iys™D, X, —iy"X, A , (3.33)

Dan=aan +%wm75xn .

Notice that since E,“ is basically the Kronecker symbol
between a pu and an «a index, the distinction between U(1)
and Einstein spinor indices is lost in Wess-Zumino gauge,
and 0 may be written either with a or u indices and
transforms as a spinor under U(1). It is also useful to

record . the spinor components of the inverse su-
perzweibeins,
Ea#: 8ot#+ %nyfznyxm#+ iag@a“ s
(3.34)

EamZGB')/t'x"ﬁ_*";‘oé(ynym)aany ’

where

L= A+ S (YD — Y X X

(3.35)

For the superconnection and supercurvature we have
Q, =, + é@yS){m A—iOysy, A+i00p,,

i
o2 (3.36)

R, _=A+6°A,+i60C ,
C=R+ X,V A+ "X,y X, A+447,
where

~

—_ 1 1 m 1 ,a. b, m
B,=—5Aw0,—5X, V57 Y "A—3e,e,%€¢,"3, A,

with R the curvature of the connection w,, appearing in
Eq. (3.33):
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R =e"3,, 0, . (3.37)

Thus the supergravity multiplet E,“ reduces to a
zweibein e,,?, a gravitino field X,, % and an auxiliary field
A which will not appear in the component Lagrangian.
Wess-Zumino gauge is left invariant under a subgroup of
all super-reparametrizations and local U(1) transforma-
tions, given by

BV =6v"—0y"E— 100X,y ,
BV =L+ 36%y )l — 40y "EX , +i00F

where we have used the abbreviations

i
?/SYngwn + zXn(Xm yn,}/mé—)_%gA ’

1=%§75A—éwnxmr"r'"§+%§7/57"?(n 4.

It is now straightforward to translate the symmetries
of the superzweibein into component language as well.
The super-reparametrizations relevant to the component
language are those that preserve the Wess-Zumino gauge
up to local U(1) and super Weyl transformations. They
decompose into reparametrization invariance and an
N =1 supersymmetry. Super Weyl transformations will
take us out of this gauge, so the component transforma-
tions written below are obtained only after compensation
by a super-reparametrization .and a local U(1) transfor-
mation taking us back to Wess-Zumino gauge.

(i) Local U(1) symmetry forming the group sU(1):

Se,,"=le%e,,”,
SXm:_’;‘IVSXm >
8A4=0,

dw,, =0, 1 .

m m

(ii) Reparametrizations, forming Diff(M):
8e,,=58v"3,e,,"+e,°d,, 60" ,
oX,, =6v"9,X,, +X,9,,8v",
54=56v"3,4,
dw,, =6v"d,w,, +®,0,,6v" .

(iii) Local N =1 supersymmetry:

Sema:gyaxm >
SXMZ—ZDmg—I'A’}/m_C,
54 =LA,

. i
8L‘)m ::lg‘}/m 75A+ 3§75Xm A ’

SA=—1y"E(d,, A +1X, A)—iEC ,
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8C = é(xpymypg)(am A+1X, A)—ily™D,, A
—38rPX,C—L ALA .
(iv) Weyl transformations, forming the group Weyl(M):

a__ a
de,, “=8ce,,?,

X, =380X,, .

(v) Super Weyl scalings:
de,,“=0,
X, =y O\ .

Finally we note that the “super Euler number” reduces
to the standard Euler number

i 1 —~
M)=——| d*2ER,_=——| d*%VgR, 3.38
X(M) 27TfM 258+ 27TfM Ve (3.38)
where the volume element on the superworldsheet is
given by

d’z2E=d’6d0d0sdetE, " . (3.39)

The topology of the super Riemann surface is just that of
its “body” component when it is viewed as a De Witt
(1983) supermanifold, and hence the topological
classification is again by the number of handles, when the
surface has no boundaries. ‘

The passage to Wess-Zumino gauge and the construc-
tion of the super Weyl symmetry has been carried out by
Howe (1979). The formulas of Howe have been repro-
duced here in Euclidean signature for convenience.

D. Path integrals for the RNS superstring

The superspace action for the Ramond-Neveu-
Schwarz string model is obtained by coupling scalar ““po-
sition” superfields X*, u=1,...,d=10 to two-
dimensional N =1 supergravity. The matter action is
then given by

1 2 o
I, =+~ [ @2 ED°X'D X, + X (M)

== [d%2ED_XMD X, +0M) . (340
We may decompose X* into components: X
=x*+4+ 0% +i00F*, where x* and y* may be identified
with the fields occurring in Eq. (3.1) and F* is an auxili-
ary field. The action (3.40) actually coincides with Eq.
(3.1) in Wess-Zumino gauge except for a term F2. The
symmetries (i), (ii), (iii) of Sec. III.B of supergravity will
become symmetries of I,, when X* is assigned the corre-
sponding transformation laws: X* is a local U(1), super
Weyl, and super-reparametrization scalar. In addition,
I,, is evidently invariant under space-time Poincaré
transformations if the target space-time is flat Min-
kowskian. Imposing the above symmetries, we find that
the action (3.40) is unique.
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To quantize the theory we integrate e i over all su-
pergeometries (E,4,Q, ) satisfying the torsion con-
straints and over all superfields X*, and we sum over all
possible topologies of the super Riemann surface. Recal-
ling that this reduces to the sum over the number of han-
dles just as in the bosonic case, we may conjecture the
contribution to the partition function at 4 string loops,

Z,= [ DE, "D Qy DX*8(T)exp( —1,, [ X", Ep 1)

(3.41)

with the topology of the worldsheet fixed at 4 handles.
The delta function enforcing the torsion constraints [Eq.
(3.11)] is denoted by &(T). It involves only algebraic
equations, which are linear in Q,, so that the Q,, in-
tegral may be ignored once the torsion constraints have
been enforced.

Similarly, scattering amplitudes are obtained by in-
tegrating the product of e I by a number of vertex
operators, exactly as in the bosonic case. We shall not
reproduce the corresponding formulas here.

The integral assumes the existence of a local U(l1),
super-reparametrization-invariant measure, not depend-
ing on derivatives. The unique choice for DX¥* comes
from the metric

l|8XH|| 2= fMdzzESX”SX# (3.42)
We can carry out the integration over X* in Eq. (3.41)
since it is Gaussian. As will be shown in Sec. HI.E, how-
ever, the operator D D'”=0, has zero modes. First,
there is the constant superfield corresponding to constant
x*. For odd-spin structure, there will also be a Dirac
zero mode for ¥*, but how many zero modes remain for
Oy may depend on thie superconformal class. If there are
odd zero modes of [J, (analogous to Dirac zero modes),
then the partition function of Eq. (3.41) must vanish—
though of course correlation functions may be nonvan-
ishing. Thus the proper formula is obtained by omitting
only the constant zero mode, so that we obtain

f d?z

—d/2

Z,=Q [ DE, "D Q,,8(T) T 5, 5%t Do

(3.43)

Here Q is the volume of space-time, and the prime
denotes omission of the translation zero mode. Note that
the superfield X* depends on the spin structure, and
hence so does the superdeterminant.

The integration over supergeometries is considerably
more complicated. Since there are torsion constraints,
we have the choice of using the first- or second-order for-
malisms (see de Witt and Freedman, 1983). In the first-
order formalism, all 16 components of E;,* and all 4 of
0, are integrated over, subject to the torsion con-
straints, which may be represented by the use of
Lagrange multipliers. Alternatively, in the second-order
formalism, dependent degrees of freedom are completely
eliminated by use of the torsion constraints, and the in-
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tegration measure is restricted to the independent com-
ponents only. Though elimination of dependent degrees
of freedom can conveniently be achieved only if simul-
taneously a gauge condition is imposed (like Wess-
Zumino gauge), the dependent infinitesimal variations of
the supergeometry are easily determined, as was done in
Eq. (3.22). To write down the metric on the space of su-
pergeometries, infinitesimal variations are all- that is
needed; thus to construct the natural measure on the in-
dependent components of §E,, 4 and 8Q,,, we recall that
the only independent components of H, 2=E MSE, "
are H,% ysH=(ys);"H,’, and H,", the other com-
ponents being given by Eq. (3.22). The expression for
8Q,, can be determined from Eq. (3.14). Note that these
relations involve superderivatives of the independent
components. Thus, in order to obtain a metric consistent
with locality on the worldsheet, it is necessary to con-
struct it in terms of independent fields only. This metric
on H 42 should be of the form

I8Ey 4= [ d?2z E[¢*PH ,°H ;°+¢ \ H ,*H °

+C2(’}/5H)(’}/5H)] ’ (3.44)

where ¢; and ¢, are undetermined numerical constants,
analogous to ¢ in Eq. (2.21). The measure on DE,,* will
always be understood as coming from this metric. Asso-
ciated with Eq. (3.44) is a quadratic form, constructed in
the standard way, and denoted by {H, | H, ).

Though super-reparametrization and local U(1) invari-
ant, ||8E,,"|| fails to be super Weyl invariant, which will
give rise to the super Weyl anomaly, as we shall see later
on. Super Weyl invariance is recovered for the full am-
plitude, as the anomaly from the matter determinants
and Faddeev-Popov ghosts cancel in the critical dimen-
sion d =10 and in the case of the heterotic string for
gauge groups of rank 16. The same will hold true for
possible (perturbative) gravitational and holomorphic
anomalies arising in connection with the chiral Dirac
determinants, as will be shown in Sec. VII. Of course, as
higher string loop effects are considered and surfaces of
nontrivial topology are used, there may be global
reparametrization (or modular) anomalies. In the case of
heterotic strings, for example, they give rise to further re-
striction to the gauge group Spin(32)/Z, and Eg X E,.

After all these symmetry groups have been factored
out, we should be left with a (finite-dimensional) integral
over the space of supergeometries that are inequivalent
under any of these transformations, and we are now go-

" ing to identify this space, first locally in Sec. IIL.E and

then globally in Sec. IIL.G.

E. Deformations of supercomplex structures

The effect on H,® of combined super-
reparametrization 8V¥ and U(1) and super Weyl trans-
formations 8L and 82 is completely described by the ac-
tion on the independent components of H 4,2 which were
identified in Sec. ITL.B:
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H ®=8Z+D 8V,
(¥5)a"Hp*=8L +(y5) P DgdV*—8V Q. ,
H, '=D8V"+2(y"),, 8V

This shows that H,* and ysH can be completely elim-
inated without any topological obstruction through a
super Weyl and local U(1) transformation. Since any-
thing proportional to a ¥ matrix can also be eliminated
from H ab in a purely algebraic fashion, it is natural to in-
troduce

(?ISV)ab: _(7/07/1)

(3.45)

)" D8 V© (3.46)

in analogy with Eq. (2.23).
components we obtain

(P SV)_*=D_8V7

Upon isolating the various

(P8V)_?=0, (3.47)

and their complex-conjugate expressions. We observe
that the only nonremovable H’s are those H,%s not in
the range of 7;. At this stage in the bosonic case, we
concluded that the metric deformations 8g,,, not in the
range of P, must belong to the orthogonal complement
of the range of P;. This step assumes that the metric
I8g||* is nondegenerate and (positive) definite.
~ For the superstring case, we see that the metric defined
in Eq. (3.44) is nondegenerate but fails to be definite (i.e.,
there exist H=£0 with ||H||=0). When the metric is
nondefinite, there may in general be elements belonging
to both Range?; and (Range?,;)!, and the sum of these
twob spaces need not span the full space of deformations
H,

To analyze the structure of the complement of
Range?,, let us investigate the intersection of Range?,

and (Range?,)!. Introducing the natural metric
]|8V||2=fMd2zE8V"8Va (3.48)

on the space of ‘tensor fields of weight n® —n, we readily
derive the identity

(Range?,)' —Ker?! , (3.49)
where
(PIH ) =y, y*V*DpH " . (3.50)

Now assume that H €(Range?,)N(Range?, )}, then we
have with the help of Eq. (3.49) that H=78V and
Y’TH 0. Combining both, we obtain 7’*‘? 8V =0, and so
there must be an element 8V not in Ker?, which belongs,
however, to Ker?} 1P,. Conversely, if the kernels are
equal, then such elements 8§ V40 can belong to Ker?lr?l,
and the intersection between Range?; and (Range P,)!
must be trivial:

Ker?P, =KerP|P, = (Range?;) N
(3.51)

Equivalently, this means that the inner product { | )
remains nondegenerate upon restriction to Range?,;.
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(Range?,)! ={0]} .

Consider the element H,; =78V, and H,=78V, of
Range?;, and compute their inner product:

<H1 |H2>=<7J18V1 |?16V2>

=(8V, | PiP,8V,) . (3.52)

If this mner product vanishes for all 8V, then
8V, EKerP! 12, by nondegeneracy of { | ) on the space
of all 8%7s. If the inner product { | ) is to remain non-
degenerate upon restriction to Range?;, then we must
also have H;=0, so that (3.51) holds. Thus the issue
here is the relation between Ker?; and Ker?!?,. As will
become clear during our subsequent discussion, the case
of the torus is truly exceptional, and we shall treat it sep-
arately later on.

For A >2 and & =0, it will be shown in Sec. IIL.F that
Ker?, =Ker7”;791, so that the intersection between
Range?,; and (Range?,)" is the null vector only and the
sum of Range?; and (Range?,)* spans the full space of
y-traceless H,”s. Putting everything together we obtain
the orthogonal decomposition

(H,?}={6%}® (0L }®RangeP @ KerP] .  (3.53)

The elements of Ker?; will be termed superconformal
Killing vectors and those of Ker?’]‘ super moduli deforma-
tions or holomorphic superquadratic differentials.

To gain further insight into the nature of the super
moduli deformations of Ker?’l, we rewrite 731 com-
ponentwise

(Ploy=D, 0", (PloyV=D_o% , - (3.54)
and make contact with Wess-Zumino gauge by setting
¢+7=¢0+6¢++§¢_+i05¢1 . (3.55)

The result is

(Ploy=¢_+6 z¢,+ A¢0 +0(D,po+1X. "9 ,)
68 |~Dyb, —1X,*D.got > A_g,
+iAG 4+, X (3.56)

The changes 8E,,* solving these equations will in general
take us out of Wess-Zumino gauge, and a compensating
super-reparametrization and U(1) transformation is need-
ed, which, however, will not change the number of super-
moduli. Under the hypothesis that the space of . in-
equivalent supergeometries (to be termed supermoduli
space later) is a supermanifold, we can determine its di-
mension at any point, and in particular at (e,, X, ) satis-
fying X, " =0and A4 =0, so that

P{¢,. =0 and P}, 4,=0

where Py, P, ,, are the operators (2.48) familiar from the
component formalism. The index theorem and a simple

(3.57)
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counting of the number of conformal Killing vectors and
spinors in each case yield the dimension of the vector
spaces KerP]L and KerP;r/z {cf. Egs. (2.50) and (2.51)],

(0,0), A =0,

dim KerT)‘;:
(6h —6,4h —4),

hs2. (3.58)

Here the two integers denote, respectively, the dimen-
sions for the even and the odd coordinates. More gen-
erally, operators 7, acting on superfields of arbitrary
weight n > 0 can be introduced and expressed in terms of
the U(l)-covariant derivatives D" . In Wess-Zumino
gauge they will admit expansions similar to Eq. (3.56)
[see Eq. (3.66) below], and the previous arguments will
show that the number of zero modes is given by

(4n +2,4n), h=0,

dim(Ker?, )= |(0,0), h>2,

(0,0), h :0,

; Ty
dim(KerP )= (((4:1 +2)(h —1),4n(h —1),

h>2.

For the case of the torus with 2 =1, it will be clear
that the arguments given in Sec. IIL.F in support of the
direct sum decomposition of Eq. (3.53) break down. In
short, the reason is that the natural choice for constant
curvature on the torus is zero curvature, so that the auxi-
liary field A vanishes and (3.51) does not hold. Actually,
the natural metric ||H || becomes degenerate on the torus.
Thus we would like to analyze the supermoduli problem
in a way that does not depend on this metric. Ultimately
we are interested in describing and parametrizing those
geometries which cannot be interrelated by super-
reparametrizations, local U(1), or super Weyl transfor-
mations, and we shall now attack this issue directly.

We start by considering the full supergeometry with
the torsion constraints. First, by a super Weyl transfor-
mation, we fix the curvature R | _ to zero; the fact that
this can always be done will be shown in Sec. IIL.LF. For
the torus, R, =0 cannot be chosen in a unique way
since this slice is left invariant under harmonic super
Weyl scalings satisfying

D . DVz,=0. (3.59)

The condition R | _ =0 is super-reparametrization and
local U(1) invariant, and this is exactly what is needed to

fix Wess-Zumino gauge, which we now do. In com-
ponents, the zero-curvature condition becomes

A=0,

A=—iyse™D, X,=0, (3.60)

C=R=0,

where the components of the curvature were introduced
in Eq. (3.36). Note that in view of Eq. (3.37) the last con-
dition implies

9,,w, —0,0,, =0, (3.61)

where w,, is the only nonvanishing component of the
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connection £,,. The remaining symmetries of this slice
are now local supersymmetry, local U(1) invariance, and
ordinary reparametrizations, whose actions were listed in
Sec. II1.C.

However, on this slice, the form of the infinitesimal
versions of these transformations may be considerably
simplified. One finds that the effect of a reparametriza-
tion v”, a supersymmetry &, and a local U(1) transforma-
tion / is given by

e, =D, (v", ) +Te% e, +EvX,, ,
(3.62)

where we have introduced special combinations of local
U(1) and supersymmetry transformations, defined by

I=l+v"0, ,
E:é‘-%u"}(ﬂ .

The action of the combined three symmetries is particu-
larly simple; in fact it is global and triangular in the fol-
lowing sense. The (modified) local U(1) transformation
acts globally on all three fields in a well-known way. The
supersymmetry ¢ no longer acts on w,,, in contrast with
¢ itself. This implies that the supersymmetry also in-
tegrates to a global action on X,,, since the connection
D,, =d,,+ i, is invariant under ¢ transformations.
Finally, ordinary reparametrizations act only on ¢,,%, and
again their global action may be exploited to choose a
global gauge for the “supertorus.” Since w,, satisfies Eq.
(3.61), local U(1) transformations 7 will eliminate all de-
grees of freedom of w,,, except for the constant ones.
Note that constant I's have not been used to do so. Thus
w,, 1s constant, and this is unchanged by supersymmetry
transformations Z.

We model the torus by a square with sides of unit
length and opposite sides identified. If we assume that
not all components of w,, are multiples of 27, so that D,,
acting on spinors has no zero modes, then all components
of X,, may be eliminated via supersymmetry transforma-
tions £. Similarly, all components of 8e,, “ are eliminated
and e, may be chosen constant. Then, however, we
must have o, =0 by its very definition in Eq. (3.33),
which is in contradiction with the original assumption,
and hence all components of w,, must be multiples of 2.
By redefining all fields by multiplications by a simple
function, we may set w,, =0 without modifying the origi-
nal boundary conditions. At w,, =0, the remaining com-
ponents'? of e, ® and X = are easily found.

For even-spin structure, D,, has no zero modes on spin
fields, and we may set X,, =0 by supersymmetry and e,,°
constant by reparametrization. There remain two
translations (or conformal Killing vectors), a constant

12We count the number of real components here.
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U(1), and constant Weyl transformation, the latter two
eliminating two of the four degrees of freedom of ¢,,,°. In
total we are left with two ordinary moduli, no odd modu-
li, and two translations as residual symmetries.

For odd-spin structure, D,, has zero modes on spinors,
and we may set X,, and e,,? only to a constant, but not
necessarily to zero. There remain two translations and
two constant supersymmetries (superconformal Killing
spinors), a constant U(1) and Weyl transformation, and
two constant super Weyl transformations as residual
symmetries. The constant super Weyl transformations
are eliminated by making the constant X,, y-traceless,
and the U(l) and Weyl are used to restrict e,,° to two
components. In total we are left with two moduli, two
odd moduli, two translations, and two supersymmetries
as residual symmetries.

To conclude, we obtain the decomposition

{H, 2} ={8Z}® (8L }® {Range?,}

& {2 moduli Se,,?}® {odd moduli} , (3.63)

where {odd moduli} is zero for even-spin structure and
parametrized by y-traceless, constant X,, for odd-spin
structure.

Early investigations of supermoduli parameters and
their role in superstring perturbation theory are those of
D’Hoker and Phong (1986b), Friedan, Martinec, and
Shenker (1986), Moore, Nelson, and Polchinski (1986),
and Chaudhuri, Kawai, and Tye (1987).

F. Null spaces of superderivatives and Laplacians

In this section we examine the structure of null spaces
of superderivatives D% and their associated Laplacians
O, as well as the relation between these null spaces.
Questions relating to these issues have already come up
in Secs. IIL.D and IIL.E with regard to the scalar Lapla-

cian O, and the Faddeev-Popov operator ‘PJ{‘PI and will
be essential to the analysis of the super Weyl and
superholomorphic anomalies later on.

To gain insight into the behavior of Ker?D” and
Ker(1{~’, we note that the relation between the two ker-
nels does not depend on super-reparametrizations or lo-
cal U(l) transformations. Thus we may simplify the
analysis by working in Wess-Zumino gauge and by
choosing a slice for which X,, is y-traceless:

Xt =X,"=0. (3.64)

We shall see that generically the relation between these
kernels also does not depend on super Weyl rescalings.
We introduce the field ¥V of U(1) weight n, and its com-
plex conjugate ¥ of U(1) weight —n:

V=Vy+6V, +0V_+i66V,,
V=V,+0V, +0V_+i06V,,

(3.65)

so that the U(1) weights of Vy,, V., V_, and V, are n,

n++, n—+, and n, respectively. (Or course these
discrepancies arise because we choose Wess-Zumino
gauge.) We easily find that )

(D" V)=V_+6 —iV,+énAVo

+0(D,Vo+4X, TV )

+60 |5 (2n+ DAV —1X, X,V

—X, "D, Vo—D,V, +inA_V,

(3.66)

To compute D(,,“)V, it is useful to evaluate

fdédeEz);"I‘/z)"_ V=’e[Dz VoD,Vo—V DV, —V_D,V_+iX*V D, Vo+iX, "D, VoV, +1X, V_D.V,

+iX, "D, VoV _+ |7, ——;-AV'O v, —%AVO +inAV V_+1X, XV, V_
— WX TV _V +inV (A_Vy+inVoA V_ (3.67)
The vanishing of 0~ ’Vcan then be gotten by variation with respect to ¥ and one obtains
DZDZVO—{-%A V,— %AVO —inA V_+1D,(X,*V )+iD(X,”V_)=0,
D,V_+4iX,”D.Vo—1X,” X, ¥V, =0,
(3.68)

DV, +indV_+inA _Vo+3X. D, Vo+iX, X, 7V_=0,

n
Vi—5 AVo=0.
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These equations are still rather formidable, and we shall
take the following approach. We consider the case of
zero gravitino field X=0 first, so that the equations
reduce to

D,D_Vy=0 or PP, V,=0,

D,V_=0 or P} _,,V_=0,

(3.69)
DV, +inAV_=0 or P,_,,V +indAV_=0,
n
V,— = AVy=0.
1 2 0

These equations should now be compared with those ob-
tained from D" V=0 in Eq. (3.66) at X =0, for which we
find

D.Vy=0 or P,V,=0,

V_=0,

(3.70)
D,V,=0 or P,_,,V. =0,

n
Vl_iAV():O .

The first and the last equations of (3.69) and (3.70) are
clearly equivalent.

Although the second and third equations in (3.69) and
(3.70) seem different at first sight, we shall now show
that, generically, they will also be equivalent. Indeed, let
us derive an expression for the number of solutions
V_£0to (3.69). From D/ "2V _ =0, we have

N
V_= 23 Paba s
a=1

where ¢, span a basis for KerD/ ~1/2, and N is its dimen-
sion. In order for the third equation of (3.69) to be con-
sistent, AV _ must be in RangeD; 172 or equivalently it
must be orthogonal to KerD” /2, Thus the coefficients
P, € C must satisfy

N
E <¢BI A¢a>pa:0 s
a=1

(9] 490 =[d*2Ve Gy,

and the number of nonzero solutions ¥V _ to Eq. (3.69)
must be #(V_#0)=dimKer(¢z| A¢,). Generically,
the matrix (¢z| 4¢,) will be nondegenerate and thus
#(V _=£0)=0. For example, this will be the case when
A is any positive function.

Thus, for hs41 and ns£0, we have established the va-
lidity of Ker®D" =Ker{1!~) at least at the special point
X=0. What happens when X=0? In this case, we shall
assume that X results from a finite-dimensional space
(parametrized by Grassmann-valued odd moduli) and we
shall assume that X is linear in these odd moduli &°
Clearly, then, the different unknowns will be functions of
&% but of course since there are a finite number of
Grassmannian &’s, these functions are just polynomials of
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bounded degree. It is not hard to see that one could ex-
pand '

V,=vVO4+ v .-, i=0,1,2,..., (3.71)
where the superscript denotes the degree of homogeneity
in {. Now from the previous arguments when X =0, we
know that for 4 >2 and n <0 or h=0 and n >0, there
are no solutions to order (0): V}O):O. But if this is so,
the equation for V{2 is the same as for ¥/, since all the
perturbation terms are of order X at least, and so on.
One finds that ¥; must identically vanish as soon as V%
has to vanish. '

We shall now discuss the above relations between null
spaces for different genera. At this point, it is appropri-
ate to deduce some generalizations that will prove funda-
mental later on. For A >2 and A generic one has

n>1

Ker(\ P =KerD" *'2D" =KerD", =0, n>1,
KerDﬁf’:KerﬁD’j:l/zi)'L=Keri)"_=0, n<—4.
As for the kernel of the square of the Laplacian
DD forn < —1,

DHRDE DRI 2D V=0, (3.73)
we can deduce using Eq. (3.72) that D" D" +!/2D" ¥V =0,

and with the help of Eq. (3.72) again,. we find D% V=0,
which implies that

Ker(D"F12D" CKerd", . (3.74)

Since one manifestly also has the inclusion in the oppo-
site sense, these kernels are in fact equal to one another,
even though they need not be empty. Of course, one has
an analogous statement for the other Laplacian. Putting
these conclusions together, we have

Ker(O\ ") =Ker(D" 12D" 2 =KerD", n<—1,
(3.75)

(3.72)

Ker(Dﬁl‘))zzKer(ﬂ'_’f”zﬁ”_ P=KerD", n>1

In the case of the sphere A =0, the situation is precise-
ly reversed. It is the D" that have no zero modes for
positive n, and it is readily established that

Kerd" =0,
KerD” =0, n>1,

1
ng_f;

(3.76)

and similarly for their squares. By analogy with the
higher-genus case, this implies the following identities be-
tween kernels of Laplacians:
Ker(D" 120" ¥=KerD", n>1,
(3.77)
Ker(@’_’f”zﬂ”_ P=KerD", n< —a .

For the torus A =1, the nongeneric choice 4 =0 is
natural from several points of view, as was already noted
at the end of Sec. IIILE. For 4 =0 and flat metric, a
direct inspection shows that

Ker(O\PP={V=V,+0V, +0V_+i08V, ;
Vo, Vi,V constants} ,

Ker(O{H ) =Ker(, "N [V, =0} ,
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KerD" =Ker(O\F)N{V, =0} .

On real fields, V' _ equals ¥, and will vanish in the last
case. For even-spin structure, all constant spinors vanish
as well. :

For n =0, the above arguments do not apply. The 4
term is absent in the third equation of (3.69), and at X =0,
V_ is a Dirac zero mode. For odd-spin structure, there
exists at least one such zero mode, and so
Kerd{ ™) KerD? . Whereas KerD’, reduces to constant
superfields (when acting on real superfields), KerD&f) de-
pends on moduli through the dependence of the number
of Dirac zero modes on moduli, but may also depend on
the odd moduli. However, the following argument will
show that again Ker((],)>=Kerl[J, generically. Consider
the equation that must be satisfied by an element of
Ker([J,)* not in KerTy:

0oV =c+0n+07 (3.78)

with ¢ constant and % a holomorphic spinor. For X=0,
one readily finds that =0, and integration over the sur-
face must yield zero because [, is a derivative, so that

0= [d*2EQyV=c [d*2E . (3.79)
Now, generically, the area [d?zE will not vanish,
though of course it need not be of definite sign. For
constant-curvature geometries, indeed the area cannot
vanish because of the Gauss-Bonnet formula for the
Euler number of Eq. (3.38), when A41, and similarly the
area will not vanish on any regular geometry. If that is
so, then the constant must vanish and V&Ker(d,, We
have thus established that

Ker((y)?=Kerll, . (3.80)

It will also be useful to simplify Ker(C{7;)?. Consider

one of its elements V,
DDV, DY =0 . (3.81)

Multiplying to the left by D'/? and using Eq. (3.80), we
get

DV DV =0 . (3.82)
The spurious solutions satisfy »
DV?V =const , (3.83)

and upon integrating over the supersurface, as in Eg.
(3.79), we find again that D'V =0. Hence we conclude

Ker(O{7,))?=KerD'/? . (3.84)
The nongeneric slices are always easily treated as limits
of generic slices.

G. Supermoduli space and its complex structure

In Sec. IILE, we identified the infinitesimal changes in
the supergeometry of a super Riemann surface with
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Teichmiiller deformations, spanning Ker‘PI. The space
of supergeometries of genus A, satisfying the torsion con-
straints (3.11) inequivalent under the symmetry groups
sDiffy(M), sWeyl(M), and sU(1) is super Teichmiiller
space

{Ep 4, Q) satisfying (3.11)}
{sDiffy(M) X sWeyl(M) X sU(1)}

s Th = (3.85)
The quotient of the full super-reparametrization group
sDiff(M) by sDiff(M) is the ordinary mapping class
group MCG,, (acting on surface with spin structures) so
that we may define supermoduli space as

sM, =sT,/MCG, ,

.‘ (3.86)
MCG, =sDiff(M) /sDiffo( M)

=Diff( M) /Diffy( M) .

The complex nature of s, can be seen by viewing it as
the space of superconformal classes. Indeed, recall that
the complex structure on a super Riemann surface J,, %,
introduced in Eq. (3.23), is unchanged under sWeyl(M)
and sU(1) and that it is a tensor under sDiff(M). Thus we
have

sy, = [Ty} /sDIff( M) | (3.87)

where J,,MJyF=—8,,%, and it is understood that J,~

arises from a supergeometry satisfying the torsion con-
straints (3.11). There are now natural holomorphic coor-
dinates on sJ/,, as can be seen by exhibiting a natural
complex structure on it. The tangent space at J, v can
be identified with

T(sMy )= {Jp N T 0 V0T T+ 8T, NIyP=0} ,  (3.88)

on which there is a natural map

& T(sMy)—T(sM,), F8JyN)=J,F8JpN (3.89)
whose square is minus the identity
FHET V)= (T F8Tp ™M)= — 8,V . (3.90)

Thus & is an almost complex structure on sJM,. It is ac-
tually integrable, as can be seen by considering the fol-
lowing one-forms:

— (3.91)
T, N=dlyN+iddlN) .

The exterior derivatives are easily obtained,
drMN=i(rMP/\f,,N+fMP/\rPN), (3.92)

and the almost complex structure is integrable provided
dT’ vanishes where I"'=0, which is obviously the case.
Notice that this integrability condition uses only the fact
that J," itself is a complex structure on the super
Riemann surface; it does not further depend on the tor-
sion constraints. One concludes that s/, is a supercom-
plex (V' —) manifold.
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A perhaps more concrete description of supermoduli
space miay be given in terms of constant-(super)curvature
geometries. The key step in analogy with the bosonic
case is the choice of a slice for sWeyl(M) that generahzes
constant curvature. The correct choice is

R _=const . (3.93)
This slice is clearly invariant under super-
reparametrizations and local U(1) transformations. it
also has the advantage of implying that all components of
the torsion and curvature are constant, as one can readily
deduce from Egs. (3.11)-(3.13). A simple interpretation
of Eq. (3.93) can be obtained in Wess-Zumino gauge. Re-
call that in this gauge R _ expanded in powers of & is
given by Eq. (3.36), so that A4 is constant, A, =0, and
C=0. Finally we can also argue that (3.93) is indeed a
slice, in the sense that any supergeometry E, ? can be
brought back to a supergeometry E u satisfying Eq.
(3.93) by a unique super Weyl transformation. In fact
Eq. (3.20) shows that the parameter £ of the transforma-
tion must satisfy a super Liouville equation,

2D, D_Z+R,_—e*R,_=0. (3.94)
This equation is locally soluble, and there is no topologi-
cal obstruction besides the Euler characteristic.
~ By restricting ourselves to the gauge slice R, _
=const, we have eliminated the action of the super Weyl
group. To factor out the remaining symmetries we sim-
ply pass to cosets. More precisely, consider dzMQ,, as
living in the space of one-forms modulo exact forms, and
set sM. . to be the space of constant R _ super-
geometries modulo all local U(1) transformations. We
can now define supermoduli space as the coset space

sy, =sM ong /SDIfF(M) . (3.95)
From the orthogonal decomposition of {H 4} given in
Eq. (3.53), it is evident that s/, is a supermanifold
whose tangent space at each supergeometry is

T(sM,)=Ker?! , (3.96)
so that its dimension is also given by Eq. (3.58) for A=£1,
whereas for h =1, the tangent space is {2 even moduli
e,,"}® {odd moduli}.

The holomorphic structure & on supermoduli space

and its integrability are due to D’Hoker and Phong
(1987a).

H. Determinants, super Weyl and local U(1) anomalies

In order to reduce the string path integrals over super-
geometries to integrals over supermoduli space, one
needs the behavior of the superdeterminants of the co-
variant derivatives with respect to super Weyl and local
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U(1) transformations. We start by considering the Lapla-
cians (0*’ and [}, of Eq. (3.9).

The local part of the super Weyl anomaly has been
evaluated by Martinec (1983). The zero modes for super-
determinants are, however, a nontrivial issue, since the
nonpositivity of the norms could cause the kernels of
(D D_P2 D, D_, and D_ to be distinct (cf. Sec. IILF).
Each of these spaces has its own transformation law un-
der super Weyl scalings, so it is important to determine
which one will combine with sdet(®_,D_)? to produce a
local anomaly. Another consequence of the nonpositivity
of the norms is that the Laplacians (0, need not be di-
agonalizable. In addition, even though they are the prod-
uct of an operator times its adjoint, they need not be pos-
itive. In fact, writing [J, in components, it is clear that
besides the standard Laplacians acting on ordinary func-
tions, there is also a piece behaving like a first-order
differential operator, so that the spectrum in general ex-
tends from — e to + co. The square of OJ, is still not a
positive operator in general, but is at least bounded from
below. Strictly speaking, the last property has been
shown only on surfaces of constant curvature by Aoki
(1988), but is is clear that a continuous super Weyl trans-
formation may alter the lower bound, but will not send it
to — . The heat kernel exp[ —z(C1{*’)?] may thus tend
to infinity as t— o0 in an exponential fashion, and ¢-
function regularization cannot be applied to define the
corresponding superdeterminants. We now provide a de-
tailed analysis of these issues. We define the superdeter-
minant through an exponential regulator, depending on a
complex parameter s,

In8."(s)=1n sdet[ ((I4F))% +5]

o dt
== J T

which converges absolutely for Re(s) sufficiently large
and £>0. Throughout the complex s plane, 8*)(s) is
defined by analytic continuation. For constant-curvature
supergeometries 8. is meromorphic throughout C, and
this is enough to argue that 8.* will be meromorphic for
any supergeometry, as will become clear through the
super Weyl anomaly calculation. Thus, around s =0,

8*) will in general have the following behavior:

—uolFH?

e BsTre n (3.97)

NE 1

+
8 (s)=s"" sdet(OF2+0(s"" 1), (3.98)

where Nf are positive or negative integers, formally cor-
responding to the difference between the number of even
zero modes and odd zero modes. This relation defines
the superdeterminant of (D(H) whereas the superdeter-
minant of D(+) itself is the square root
sdet’ (00 = (sdet' 1 F))? (3.99)
To examine the behavior under super Weyl transfor-
mations of the determinants in-Eq. (3.99), we determine
the super Weyl change of 8{*’ and analytically continue
to s =0. We shall restrict attention to [0\™’ and quote
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the results for O}~ at the end: 8D, =(n—1)82D", —nD" 8%,
81n8‘,,+’(s)=2f “dte " 8D" = —(n+L1)B8ZD" +nd" 8% , (3.101)
€

g ~HEL? SONE =(—1F )82 +2n D% 283D F o83,

x sTr(80,H )04+ ). (3.100)
The changes of the superderivatives are given by so that'3
]
STr6O T e O ) 2 (20 4 1)sTre s % 'O _on sTros (), 0% T
=(2n +1 )%S’i’rﬁze ‘I(Dw))z—}—Zn%sTrSZe —E (3.102)
Inserting this result into Eq. (3.100), one finds
8 1n8(,,+)=2fswdt e " 1(2n +1 )Ba?sTrBZe vt(D("ﬂ)z-i— ZnaitsTrSEe —Eh Y (3.103)
Integrating by parts yields
§1n8+) —2¢~5[(2n + 1)sTrsSe 0" 4 2n sTrose " Tr12" | =
+2s [ "dt e “[(2n+ sTrd3e B e e (3.104)

Since the expression is defined for Re(s) sufficiently large, the contribution from infinity in the first term cancels out, and
the remaining traces of heat kernels are well defined at s =0. In the second term, the only nonzero contribution can
arise in the limit where s-—0 if the integral produces a simple pole at s =0. To see whether this happens, we remark
that the general form of the contribution to the supertraces is t°e ~*, where p and A are arbitrary and independent of s.
Substituted into the integral in (3.104), we find that such a contribution produces

s
(s+A)p+!

One notices that, whatever the value of p, a nonzero result is produced as s —0 only if A=0. In the trace of the su-

s [Tdtettpe M= T(p +1)+0() . (3.105)
€

perheat kernel, this results from the zero modes, so that p =0 as well. Collecting these results, we get

8insdet’'l ") = %linz) In8\ " (s)
R d

(¢

_ 32 _
= —(2n+1)sTrsSe " "2y sTréSe

The terms involving € on the right-hand side of Eq.
(3.106) are local functions of 82 in the limit where £—0,
and their expressions can be gotten from a short-time ex-
pansion of the super heat kernel, which is derived in Ap-
pendix C:

—e(@\ty? .142n 2 2
sTréZe =—i— (=" [d’2ER , 53
+0l(e),
(3.107)
—e@{? .1—2n n
sTréSe =+i— (=" [d’2ER , 53

+0(e) .

Notice that, due to worldsheet supersymmetry, there is
no term behaving like 1/¢, as we had in the case of the
bosonic string.

The traces of 8X restricted to the kernels of zero
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(@

(=) )2
n+1/2 +(2n +1)STr62 I Ker(D(+))2+2n sTrd> ‘ Ker(D(_+)I/2)2 .

(3.106)

f

modes are familiar from the bosonic case, but much more
care is needed for the case of the superstring, due to the
fact that the kernel of the square of an operator may be
different from the kernel of the operator itself, as we have
seen in Sec. IIL.F.

For h >2 and n > 1, we have Ker(O*')*=0 according
to Eq. (3.72), and that Ker(@!7),,,)?=KerD" 2 ac-
cording to Eq. (3.75). The remaining trace can be linked
to the change in the finite-dimensional determinant of ele-
ments'* @, € KerD" +1/2, using the fact that they scale as

3Note that the analogous calculation could have been per-
formed using local U(1) transformations of the superderivatives.
At this point one would have found that the contributions can-
cel and that the determinants are invariant.

14Henceforth J,K stand for mixed indices J =(j,a),K =(k,b),
etc., where j=1,...,3h —3anda=1,...,2h —2.
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q)J:e—-(n—}-l/Z)E(f)J:
Slnsdet{ D, | Pg ) =sTrd( D, | D))

=—2n (D, |82 |®,). (3.108)
J

Putting these together, we find (for # >2 and n > 1)

| sdet, "’ 4n 41
nsdet<<b1|<DK)ﬁl 47

(—)* [d2ER, 8% .

(3.109)

It is straightforward to see that the same arguments ap-
ply for 2 =0, provided that n < — 1.

For & >2 and n < —1, exactly the opposite situation is
produced, and we have according to Eq. (3.72) that
Ker((},7, ,,)?=0 and Ker(d\"')*=KerD" . The remain-
ing trace can now be linked to the change in the finite-
dimensional determinant of elements ¥ & KerD",, which
scale as W,=e"*¥ . Thus

Slnsdet(W, | Wp) =sTrd{(¥, | ¥p)
=—Q2n+1) 3V, |82 |¥,),
(3.110)
and putting all together, we find

n sdet1'H) _ ]
sdet(W, | ¥g)  4rm

(=" [d*2ER, 6% .

(3.111)

Similarly for the sphere, this formula will hold for n > 1.
The cases n =0 and n=—1 are symmetrical, so we
shall limit our discussion to » =0. The novelty here is
that one of the finite-dimensional traces is absent from
Eq. (3.106), the other one being taken over Ker([Jy)%
Though Ker([l,)? might be larger than Kerll,, it was ar-
gued in Eq. (3.80) that this is not the generic case. Since
the zero modes of [J, are super Weyl invariant, we readi-
ly deduce that Eq. (3.111) holds, but now with
¥, EKerlJ,, which may be larger than Ker@i. Similar-
ly, since @, EKerD'/? scales as ®,=e ~2/2®, it is clear
that sdet{®,; | ®; ) is super Weyl invariant, in analogy
with the finite-dimensional determinant over inner prod-

ucts of holomorphic Abelian differentials in the bosonic

string. We might be tempted to call the  differentials
@, € KerD'? holomorphic super Abelian differentials.

We may now collect all the above results for 4 >2 or
h =0 in one formula, and also integrate the infinitesimal

83’s to finite super Weyl transformations:

I sdet’O'H)
sdet(®, [ Dy Isdet( ¥, | ¥,)
—In sdetd] ") — (14418, (2)
sdet(®, | B )sdet({ ¥, | Tp) L
(3.112)
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where the local super Weyl anomaly is given by
1 ~ A~ A~ A
SsL(E)zgfdzzE($+2:D_2—zR+_2) (3.113)

and @, EKerD" /2, except when n=—1, where

&, eKerd§™’ and Y, EKerd?, except for n =0, where
¥ EKerl1{*). Similarly, we can derive the super Weyl
anomaly for (1)) and find

: sdet'],
" sdet(®@, | Dy Isdet( ¥, | ¥g)

sdet(d ()
n ~ P A =
sdet(®,; | Dy Isdet(W¥, | ¥y)

—(1—4m)S, (3) .

(3.114)

Here ®;KerD" , except for n =0, where it belongs to
Kerd§™ and ¥, KerD" ~!"2, except for n =1, where it
belongs to Ker(1\™'. )

For the torus and a generic slice, it is clear that Eqgs.
(3.112)—(3.114) hold as well. If, on the other hand, the
nongeneric slice 4 =0 is chosen, one should rather con-
sider sdet’(00{™)? and divide by the determinants of inner
products of Ker([))2,

. Amplitudes as integrals over supermoduli

With the above analysis of the space of super-
geometries, it is now easy to carry out the DE,* in-
tegral. We shall limit ourselves to the case h >2 and
treat the sphere and the torus in Secs. IIL.LL and III.M.
In parallel with the bosonic case, we introduce a slice S
of dimension (64 —6,4h —4), transversal to the action of
sDiffy(M) within the space of supergeometries. We
parametrize the space of supergeometries by

Eyt=ee®eE 4, (3.115)
with E 4 in S and the exponentials representing the ac-
tions of the various symmetry groups. If m; are coordi-
nates for the slice S, F ', are the corresponding coordinate
vectors in T'(sM qni ), and P is a basis for Ker?ﬁ;, then
the measure is obtained from the calculation of the Jaco-
bian factor associated with the change of variables from
Ey*t0 =, L, V, and m,. With the orthogonal decompo-
sition of Eq. (3.53), this Jacobian can easily be worked
out, and we find

Sdet( eiLe _2/2ﬁ1 I q)K )%

Sdet(‘bl | <DK>E

DEMA:(Sdet?I-"'?)l )1/2

XDEDLDVMT] dm, . (3.116)

The subscript in the inner product indicates which
superzweibein is used in the pairing of tensors.

The super Weyl dependence of the various ingredients
of Eq. (3.116) may be calculated in analogy with the bo-
sonic string case. First one uses the fact that



E. D’Hoker and D. H. Phong: Geometry of string periurbation theory 965

Ker?] =KerD', @ KerD ™! (3.117)

and that if ®,EKerD}! then &, =322}, €Kerd .
Similar properties are easily derived for the local U(1)

transformations using Eqs. (3.15)—(3.17). As a result; one

finds that

sdet(ele =22F, | @y ) p=sdet{u, | Bg ), (3.118)

where the inner product on the right-hand side is now
evaluated with respect to the supergeometry E u?. The
py are dual super Beltrami differentials, in the sense of
Sec. IIL.J below. Their bosonic analog appeared in Secs.
II.LE and I1.G. Next, we recall from Sec. III.H the super
Weyl scalings relevant to superstring theory:

sdet?!?; sdet? [+ 581 —108,; ()
= ~ ~ € >
sdet(®; | Px)  sdet(D, | Dy )
R (3.119)
sdet’[], sdet’], —5,.(3)

SdCt(‘pa I ‘I’ﬁ) sdet(@a I ‘T/B> ¢ '
where ¥, € Kerl[],. )

The first and second equations show that the nonlocal
2 dependence cancels out of Eq. (3.116). The local
dependence on the super Weyl scaling 2 is canceled out
by putting contributions of the Faddeev-Popov and
matter determinants together, provided the dimension of
space-time is d =10. Since we are dealing with the type-
IT string here, a potential local U(1) anomaly is canceled
between left- and right-movers on the worldsheet. For
the heterotic string, the absence of the local U(1) anoma-
ly will put further constraints on the theory, which will
be explained in Sec. III.N and amount to requiring the
gauge group to have rank 16. Vertex operators will be
determined so that the above symmetries of the measure
are preserved, after all anomalous contributions have
been taken into account. .

Since the combined measure will be invariant under
super-reparametrizations, local U(1), and super Weyl

J

sdet{p, | g )

transformations, it really runs over the coset space of all
N =1 supergeometries by these symmetries. The remain-
ing coset space coincides precisely with that of all super-
complex structures, and was termed supermoduli space
in Sec. III.G. Thus the domain of integration will be su-
permoduli space. The measure becomes

DE, A=(sdetP [P,)/2% ">t * pspLDVM

sdet( &)
py |l Px IIdm, .

—— (3.120)
Sdet<(I)J ‘q’K) J

Now the last equation in (3.119) shows that in the critical
dimension d =10 the local super Weyl anomaly S;; (X)
disappears as well, to yield the formula

. )-5
8m2sdet’L],

fdzzE

sdet{u, | By )
h f”“hrll ‘Jsdet(fl>,|<I>K)

X (sdetP {2172 (3.121)

As in the bosonic string, if we choose a slice within
SMonet» this measure is manifestly a coset measure on
sM,, which can be termed the super Weil-Petersson mea-
sure, '

d(sWP)=

sdet{u; | Dy ) -
Mo |k 1 am, (3.122)

Sdet<$J|$K) J

‘We shall often refer to the right-hand side of Eq. (3.122)
as the super Weil-Petersson measure, even when the slice
does not lie within s/ ... Such slices, e.g., those that
depend holomorphically on supermoduli parameters, will
be important later.

We conclude this section by noting that on-shell
scattering amplitudes may be reduced in the same way to
integrals over supermoduli by insertion of the proper ver-
tex operators, as discussed in Sec. VIII. For the case of
bosonic vertex operator insertions, one finds in general

8misdet'd, |7’

Vik) s Vo)) = d ———
Vitky 2L fsmhr,l ™ et D, | Dy )

where {{ )) stands for the fact that only the X* integral
has been carried out (including the integration over all
X* zero modes). ‘

J. Formulation with superghosts

In this section the Faddeev-Popov determinant, to-

gether with the finite-dimensional determinants involving

super Beltrami and superquadratic differentials, is recast
in terms of a functional integral over superghost fields,
and a local action is obtained on the worldsheet. The
goal ultimately is to derive a formulation in Wess-
Zumino gauge closely related to that of conformal field
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(sdetP 1P\ 2LV (ky) - Volk,) D p s

sdet{ ¥, | ¥,)
(3.123)

[theory. This will be fully achieved in the next section,
LK. v

Before deriving the superghost expression, we need a
better insight into the nature of superquadratic and super
Beltrami differentials.

1. Superquadratic and super Beltrami differentials

Holomorphic superquadratic differentials ®; are U(1)
tensors of weight 2 and are solutions to

D@, =0 (3.124)
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Recall that in Wess-Zumino gauge P S =0%+0¢}
+(3i /4) A ¢560 satisfies the equation

D,¢9+1xF ¢)=0,

. 0 0 (3.125)
D.¢;+1XFD,p;—35A_¢3=0.

When X =0, ¢J and ¢} are holomorphic 2 and quadratic
differentials, respectively, so in that particular case we
may set ¢‘}:¢}1 =0. The remaining components #% and
¢Jl~ are then the standard holomorphic differentials, and
their number is in accord with index calculations. They
are also naturally even Grassmann-valued elements.
Away from X=0, the same number of solutions to Eq.
(3.125) exists, and here ¢) and ¢} are even, whereas ¢!
and ¢! are odd Grassmann elements. Putting all togeth-
er, we have 5h—5 holomorphic superquadratic
differentials @, 34 —3 of which are odd (®;) and 2A —2
of which are even (¥, ).

Super Beltrami differentials ux with K =(k,b) are dual
to holomorphic super quadratic differentials and may be
normalized as

(ug | @) =8¢, , (3.126)

so that there are again 5k —5 pg’s, 34 —3 of which are
odd (u; ) and 2h —2 of which are even (u,). More gen-
erally, super Beltrami differentials may also be viewed as
inequivalent small deformations of the supergeometry of
a super Riemann surface, belonging to the tangent space
to supermoduli T'(s/M,). (See the analogous discussion
for the bosonic case in Secs. ILD and ILE). It will be
convenient to introduce coordinates my for supermoduli
space; m,; should be thought of as ordinary even moduli
and m, as odd moduli. The small deformations ine-
quivalent under U(l), super Weyl, and super-
reparametrizations could be parametrized by the com-
ponent H _* (and its complex conjugate) according to Eq.
(3.45). Thus the super Beltrami differentials yx may nat-
urally be defined as
)  OEu”
Omyg

pr=(H_*p=FE _ (3.127)
It follows that super Beltrami differentials satisfy the in-

tegrability condition given by

a:u’K +( o )KL alu’L

=0. .
am, dmg (3.128)

It is instructive to look at this structure in Wess-
Zumino gauge, where we have

HAZ='6_(eE”‘6emz—08)(z+) . (3.129)
There is also a contribution from a Weyl transformation
of the form e,™de,,“ which has been omitted from Eq.
(3.129) since it does not induce a motion in supermoduli
space. Thus, in Wess-Zumino gauge, the super Beltrami
differential may be decomposed as

px =0pg +6ug) ,
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where

m aemz o __ aX;
amK » Mg =

L—e_ 3.130
1294 ez amK ( )
Clearly, u} and p are even and correspond (for X =0) to
the ordinary Beltrami differentials.!

From the duality of ug and @y, it follows that their

components are also naturally dual,
(g | @) =Cpuk | 95 +ug | @))

and for X=0 the ordinary Beltrami differentials u} and
1) are dual to the holomorphic quadratic and 3
differentials, respectively.

Finally, we introduce super-quasiconformal vector
fields associated with superquasiconformal transforma-
tions. The superderivative of a super-quasiconformal
vector field is to be identified with the super Beltrami
differential, which lies in T'(s/, ), and may be viewed as
a deformation of the supercomplex structure,

(ug) =D Vi .

(3.131

(3.132)

It is again useful to restrict our attention to the case of
Wess-Zumino gauge, and with Eq. (3.132) we find that
Vi must be of the form

Vi=V} +9V,3——é(9(7,4 Vi
with
px =D VR +X *D, Vi +iA_Vi ,

(3.133)
pk =D Vg + X, TVR . -

For X=0, V} reduces to the ordinary quasiconformal
vector field.

Super-quasiconformal transformations W can be
defined as satisfying the super Beltrami equation

D_W=uD,W (3.134)

for a general super Beltrami differential u= 3 {xpix.
When X =0, it contains the ordinary Beltrami equation
for the body component of W.

2. Superghost expression for superdeterminants

To represent the Faddeev-Popov superdeterminants,
we introduce a ghost superfield C of U(1) weight —1 and
an antighost superfield B of U(1) weight 3, as well as
their complex conjugates C and B. We shall also assign
ghost charge 1 to C and B and —1 to C and B. The
relevant superghost action is

1 -
I (C,B)==— [d’2E(BD_C+BD,C). (3.135)

15,9 has also been termed a super Beltrami differential in the
literature. We shall, however, reserve this name for py .
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Clearly, I, is super-reparametrization, local U(1), and
super Weyl invariant, provided B and C scale as C =e3C
and B=e /228 We introduce functional measures
DC and DB through the metrics

|8C|?= [ d*z EsTsC
_ (3.136)
|8B|1>= [d*2ESBSB ,

each of which is invariant under ghost number rotations,
super-reparametrizations, and U(1) transformations, but
not under super Weyl rescalings. If we discard integra-
tions over zero modes (denoted by primed fields), we have
in a straightforward manner!$

(/87 (3.137)

[DB'B'CCe =(sdetPiP))!72 .
This integral involving the first-order action I, on the
odd (C) and even (B) superfields may be understood by
considering a toy example. Take the case of an odd
(C=c+6y) and an even (B=[3+0b) supervariable.

11;1 [ d%y [ D(BBCT)exp [—1I,4(C,B)+ %ék(uKIB)+fK<ﬁK | B)

The ordinary integral is easily evaluated, and we find

[ dBexp [ifd@BC]:fdb dBeitbe—B)

=2mid(C) , (3.138)

where 8(C)=58(c)8(y). Thus, carrying out the B’ and B’
integrals in Eq. (3.137), one finds

(B (3.139)

[DB'BYe " —sp_C)8(0,T),
so that the C and C integrals produce precisely the Jaco-
bian factor as given by Eq. (3.137).

To obtain a representation including the finite-
dimensional determinants as well, we should integrate
over the zero modes of B. This can be done by adding to
the ghost action the coupling of B to super Beltrami
differentials, since these are dual to the zero modes. To
do so we introduce variables §g (£, ’s are odd, §,’s even)

and evaluate the integral

(3.140)

in two different ways. First, by separating B =B+ B’ into the zero-mode contribution B, and the non-zero-mode con-
tribution B’, we see that the term involving py precisely couples only to B, whereas I sgh depends only on B’. Thus the
B, and B’ integrals separate. The B’ integral produces the infinite-dimensional superdeterminant as in Eq. (3.137). In
the B integral, we may decompose B, onto ®; (suitably normalized): Bo= 3, B8,®;, and since B, is even, 3, is odd

and B; even. The B and { integrals then reduce to

Sdet(MK ‘ q’])

I1 [ dcxdBy exp [2 Ex x| 9,08, }=
J.K J K

sdet(<DK |(DJ>1/2

(3.141)

after restoring the normalization. Our second way of evaluating Eq. (3.140) is to carry out the { integral first. Putting

all together, we have

sdet?|P,
sdet(®, | ® )

172

sdet{ug | ®,)= [ D(BBCT)e " “P [T |8({ugx | B)) |2 .
K

(3.142a)

Since for K =k, {ux | B ) is odd, the § function reduces to a linear function, so that equivalently

T18(Cx | BY) =TI $uex | BY TI 8y | BY) .
K k b

(3.142b)

Thus we arrive at a general formula for the scattering amplitudes in terms of the superghosts,!’

(Vy(ky) - V,,(k,,)),,=fsmhdmefD(XBC)(( Vitk) V(e )W TT 18(Cey | BY) 2T | Cy | B |27 .
b k

Here, I is the full action I =1, +I,;,. As compared with
the ghost formulation of the bosonic string, an unexpect-
ed novelty arises here. Whereas {y,; | B) amounts to an
insertion of the operator B, the factors 8({u, | B)) give
rise to a new type of nonlocal insertion. We shall come
back to this issue when dealing with the component for-
mulation.

16For the sake of definiiteness, we shall only consider the case
h >2, where C has no zero modes. Otherwise, the C integration
must be similarly restricted.
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(3.143)

[

Further reformulation is possible when representing
super Beltrami differentials in terms of super-
quasiconformal vector fields, through Eq. (3.132). Re-
marking that the B field is effectively holomorphic, we
have

(ug |B)~ [d*2ED_(BVy) .

Super-quasiconformal vector fields may be viewed as

1"Henceforth, we use the notation d*my = [ diigdmyg.
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‘“super-reparaimetrizations” with a discontinuity 8V
across a contour Cg. In that cas¢, the inner products
further reduce to for B=B+6b+ -+ )

(ug |B)=Pc dz(BOVE+b8Vi)+ b dzX, " BEVE .

: (3.144)
We shall not make use of this formulation at present, and
just poirit out that it should find use when dealing with
the equivalence between the Polyakov first-quantized
superstring, as we have discussed here, and Witten’s
string field-theoretic formulation of the superstring.

3. BRST symmetry

We begin by discussing the stress tensor. Super-
geometry is specified by only six independent fields, and
thus there are only six independent components of the
stress tensor, defined through an infinitesimal change in
the total action,

. _
I=—2;fdzzE(%i)_X’ﬁ@JrX”+BZ)_C+B:D+C) ,
, (3.145)
1
BIEEfdzzE(H+ YTt H T,

+H_*T,” +c.c.) . (3.146)

The full action I is U(1) and super Weyl invariant, so we
must have T, *=0, and since it is invariant under
super-reparametrizations 8¥*, we also have T,* =0 at
the classical level.!® These symmetries will also be imple-
mented at the quantum level (in the critical dimension),
so we shall completely ignore the components 7, * and
T,* and set them to zero. We shall also denote T,” =T
and call this the stress tensor. Invariance under super-
reparametrizations § VZ implies that 7 is conserved,

DT =0 . (3.147)

It is sometimes convenient to consider the matter (T,
and superghost (T, ) contributions separately; they are
given by
T'=T,+Ty, ,
- 2
T,=—3D, XD X, ,

Tyn=—CDAB+1D, CD B—~HD*C)B ,

(3.148)

and are classically conserved.
Once the local gauge symmetries have been fixed andI

Z(X*,B*,C*)= [ D(XBCexp[ —I(X,B,C)+1,(X,B,C;X*,B*,C*)],

where I is the total action of Eq. (3.145) and I, couples
the external sources X*, B*, and C* to the fields X, B,
and C in a super-reparametrization and local-U(1)-
invariant way:

18Compare with the bosonic string where Weyl invariance im-
plies that 7, =0.
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Faddeev-Popov ghosts introduced, the presence of the
original symmetries is revealed by the existence of BRST
symmetry. The total action I is indeed invariant under

SXH=ACD X+ —IAD, CD, X'+c.c.,
3C=ACD*C—1AD, CD_ C,
8B=—AT,

where A is an odd constant parameter. Associated with
this symmetry is a current of weight %,

JersT=C( Ty + 1T ) — 3D (C(D,CIB) , (3.150)

which is conserved: D _jgrgr =0. It was pointed out by

(3.149)

Friedan, Martinec, and Shenker (1986) that the super-

ghost system by itself also possesses an additional U(1)
symmetry, making it into an N =2 superconformal alge-
bra. The associated U(1) cuirent

Juy=2D B)C+3BD  C (3.151)

is conserved: D_jy(,=0.

The presence of BRST symmetry implies the existence
of certain Ward identities for the correlation functions,
assuming that these are taken with respect to a (physical)
BRST-invariant vacuum. In the case of the bosonic
string we presented two somewhat distinct methods for
handling these Ward identities. In the first one, the
BRST charge was written as a line integral and analytici-
ty properties of the correlation functions were used to
“pull off the contour” and rewrite the full contribution as
a total derivative over moduli space. The second method
did not rely on such analyticity properties and has a wid-
er range of applicability, though in the case where the
correlation functions possess analyticity properties, these
are not readily translated into this langauge.

For the superstring, as we shall see explicitly in Sec.
VII, the superghost correlation functions are mero-
morphic, but they possess in addition to the expected
poles some spurious poles, which in general have to be
taken into account in the analyticity arguments before
correct conclusions can be drawn. Maybe the use of su-
percontour integrals and superanalyticity on the su-
perworldsheet can get around this problem. For the time
being, we shall formulate the BRST Ward identities using
the more general functional treatment, where no analyti-
city properties are assumed. One derives such identities
on the generating functional, and by differentiating with
respect to the sources, one can obtain them for any corre-
lation function.

The starting point is the generating functional

(3.152)

I
I,=[d*2E(X*X+B*B+C*C+B*B+C*C).
(3.153)

Correlation functions are obtained by taking successive
functional derivatives of Z. We introduce the notation'®

19Henceforth, we suppress the u index on the X field.
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s 1 8 1 3 1 8
" E 3x*’ ~  E 8B*’ E 8C* '
We shall also need the functional derivative with respect
to the supergeometry changes H_?,
_1_ 8
CE8H_ *

B (3.154)

(3.155)

For example, the partition function, according to Eq.
(3.143), becomes®

Zh:fsmhdzm,(lg |8(¢ug | BY)|2Z(x*,B*,c")|

*=0

(3.156)

so that the operators with hats effectively play the role of
the quantum operators associated with the fields.

The BRST Ward identities are derived on the assump-
tion that the measure D(XBC) is invariant under BRST
transformations (3.149), which will be true at the quan-
tum level orly in the critical dimension. We then define
the BRST operator

AQprsTZ(X*,B*,C*)

—I+]

= fsmhdme fD(XBC)(SBRSTIs Je . (3.157)

A little algebra gives
*CPARC—1D,CD, C)+c.c. ],
(3.158)

which yields almost /t\he same BRST transformation laws
for the operators z?, B, and Cas given in Eq. (3.149):

8X =[X,\Oprsr]

=ACD XD CD K +c.c.,
66:[61}"Q\BRST]=A'6$2+6_%)\‘Z)+@$+6 ’
8B =[B,AQprsr]=—AH .

(3.159)

As an interesting application, we may evaluate the BRST
behavior of an insertion occurring in the expressions for
the amplitudes®!

[pg | B)AQprsr]1=2 l( ~ )KBF?T + [d*2E, [ d*wE,B*(2) A (2)ug(w)1B(w) (3.160)
K N
where we have used the fact that
9
= 3.161

(g | H) =4 (3.161)

The (anti) commutator of this object with another insertion vanishes in view of the integrability conditions (3.128),
, A 9 )
[u | B, [Kpg | B >,KQBRST]]=7&(~>’~“<~—~—“K (R §>=0 (3.162)
omy OImyg

We also have A

[8((ux | B)),A0prst1=[{px | B),AQprsr18'({pg | B)) (3.163)

where the ordering of 8 and [ ] on the right-hand side is immaterial in view of Eq. (3.162). With the help of Eq. (3.162)
once more, we can now permute the BRST operator through all insertions,

HS((,U«K 1§>)’}"Q\BRST (3164)
K

5h -5
T 8(ux | B)).

5h—5 K'—1 .
= 3 [k | B, AQpgrsr] IT 8(Cuk | B))8'(Cug | BY)
K'=1 K=1 K=K'+1
To deal with scattering amplitudes, we have to insert vertex operators for physical states. Furthermore, we must
show that a total BRST change in any vertex operator—which simply amounts to a gauge transformation in field
theory langauge-—produces a vanishing contribution.
The physical vertex operators for the emission or absorption of bosonic partlcles in the functional formulation can be
taken to be super-reparametrization-, local-U(1)-, and super-Weyl-invariant vertex operators of the Polyakov string (to
be discussed fully in Sec. VIII) without any B or C insertions, and they are thus of the form V,-(/? ,H). It is not hard to

see that they are automatically BRST invariant (in the critical dimension) in the following sense:
[AQprsr Vi(X,H)IZ(X*,B*,C*)=0. (3.165)

To show this we need the Ward identities of the genefating functional under super-reparametrizations, local U(1), and

20The subscript &« =0 sets all sources to zero.
21( =1 when K=k and — 1 when K =b.
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super Weyl symmetry. All of these are nonanomalous in the critical dimension, as long as the sources remain orthogo-
nal to the zero modes of their corresponding fields. For example, it is straightforward to derive the super-
reparametrization Ward identity )

[ 2E@_VIA,V,1— 1D VVIR VDLV R+ LV*D, VIR)Z(X*,B*,C*)=0 (3.166)
valid for arbitrary fields ¥* and ¥ . For later convenience, we have added the effect of a supplementary super Weyl
and local U(1) transformation of the second term. Evaluating Eq. (3.165) explicitly, we get

[d*2E[—-B*[A,V,1-(CDAR 1D, CD X)V/(X,H)IZ(X*,B*,C*)=0. (3.167)

Finally, we use the Schwinger-Dyson equation,
(B*—D_C)Z(X*,B*,C*)=0,

in order to replace B* in the first term of Eq. (3.167) by D_ €. Furthermore, since ¥? and ¥V were arbitrary in Eq.
(3.166), we may choose V?=AC and ¥+ :?\i)+@ and add Eq. (3.166) to (3.167). The exact cancellation shows that Eq.
{3.165) holds, so that any super-reparametrization-, local U(1)-, and super-Weyl-invariant vertex V; is also BRST invari-
ant.

To show decoupling of BRST charges, let us consider the amplitude with » —1 physical (BRST-invariant) vertex
operators V', ..., V¥, _, and one insertion of the BRST transform of an arbitrary operator V,,

(Vi Vo[ AQprsts Va 1D = fs/n,,dme IT | 8Kk |§)) | 2I71 U I/}nAIMQBRST’f}n 12(x*,B*,C*) (3.168)
K

*=0
The BRST invariance of 17,-, i=1,...,n—1 and of the generating functional allows us to move AQBRST Jjust to the right

of all 8-function insertions. With the help of Eq. (3.164), we can bring the resulting commutator [{uy | B ), AQgrsr]
completely to the left. But now the sources should be set to zero, and only the derivative with respect to myg remains

from Eq. (3.160), so that

h—5 d

5
(V eV, V > = dzm
1 n ][QBRST n] h fs./l/lh K K =1 amK'

with

K'—1 R
W= TI 8({ug | B8 (g | B))
K =1

K=K'+1

Thus the insertion of BRST changes in arbitrary opera-
tors produces total -derivatives on supermoduli space.
The total contributions then arise only from evaluating
Wy at the boundary of moduli space. If the string
theory satisfies all its equations of motion, i.e., the back-
ground space-time is a solution to the “string field equa-
tions of motion,” then such contributions may be expect-
ed to vanish. However, when this is not the case cancel-
lation may be required with effects on surfaces of
different topology.

The use of superfield superghosts was proposed by
Friedan, Martinec, and Shenker (1986) and further
developed by Martinec (1987).

K. Chiral splitting in the component formalism

Though the expressions for the amplitudes obtained in
the previous section are complete, one may wish to
render them yet more explicit by working in the com-
ponent formalism. Actually this is where the calculation
for these amplitudes was performed in the first place. In
this section we shall treat the case of the type-II super-
string, postponing the discussion of the heterotic string
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(3.169)

5h—5 L P—
I 8Cux | BN II 8(pug |[BYP, - P,Z(X*,B*,C*)

K=1 * % =0

{
" to Sec. IIL.N.

Upon choosing Wess-Zumino gauge, we find that the
superspace action (3.40) reduces to Eq. (3.1). We shall re-
call it here for convenience and display its dependence on
complex (chiral) fields explicitly. We shall also drop the
term proportional to the Euler characteristic, as well as
the one involving the auxiliary field F,

Ly=I,+I,+I,+I% ,
where

1 2 —
L s DD

1 .
Iy="— [ &6V (—94 Dyt —yt D),

) _ (3.170)
Iy=o— fMdzg\/g (X, *Y# D,xF+X, " D_x*) ,

2_ b 2600y —
L=y L 6V

This matter action could now be considered as a super-
gravity theory in its own right. For string theory, quanti-
zation would require integrating over the x*, ¢*, g, ,
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and X, fields in a reparametrization-invariant, local su- Wess-Zumino gauge can always be implemented in a
persymmetric, and Weyl-invariant way. The difficulty is purely algebraic way. After this has been done, the sym-
that it is impossible to define a workable measure for the metries are those described in Sec. II1.C.

component fields that is local and supersymmetric; We now restrict the superghost action I, (C,B) to
indeed, the framework in which local supersymmetry is Wess-Zumino gauge as well. To this end, we decompose
manifest is precisely superspace. Thus, instead of taking the ghost superfields into components,

the action (3.170) as our starting point and quantizing it

directly, we shall rather begin with the superspace for- B=p-+6b+06B,+i00B; , .
mulation of the: previous sgctiogs .and project it.down C—c+0y+8C,+i00C, . .
onto Wess-Zumino gauge. Since it is most convenient to
perform such gauge choices in a local quantum field = We also restrict X, to be y-traceless, as may be done in
theory, we see that the superghost formalism is most the critical dimension where the super Weyl anomaly
practical in this respect. Notice that the choice of the cancels. One then finds

J

1 — . . ] 3i .
Isgh—;EfMdzg\/g —iB,C,+B, 1C3+éAc +b(Dc+4X,ty)+B T’Ac2+gx2+pzc+pfy+m_c +c.c.
(3.172)

It remains to evaluate the contribution from the 8 functions on {ug | B ) in Eq. (3.142) to have the full ghost expression.
Since in Wess-Zumino gauge u, is given by Eq. (3.129), we see that B, and B; (and their complex conjugates) never con-
tribute to these inner products, and we have

(ug | BY=Cux | 6)+<(u% |B) . ‘ (3.173)

Thus in the full B-C integrals in Eq. (3.142), the fields B,, B3, C,, C; and their complex conjugates are auxiliary and
never carry any derivatives. They may be integrated out explicitly, and ultralocality here says that the only effect will
be a super area term, whose coefficient is determined by super Weyl symmetry and is thus immaterial.

We end up with the following expression for the super Faddeev-Popov determinants in Wess-Zumino gauge:

Sdet?}t7)1 1/2d ( q) \ fD(b ) —Lgn ( K 8(( B)Y)|2 : (3.174)
orC, [0y | tne | @)= [ DibeByle™  IL | G |B) 17T 1804y | BD)]7, |

f

where it is now understood that the field B in the prod- by
ucts is restricted to B=[-+6b, the superghost action .y 3
takes on the simplified form Segn =707 —3BD;c —(D;)c . 3.176)

Actually, we shall sometimes make use of the full current
Isgh:Iggh+Is1gh ’ clualy

where S=— Y4 D, x"+Sy , @3.177
o 1 g — which is only the X-independent part of the full super-
Tgn = —2_7;.[ Md §V'g (bD,c+pBD,y +c.c.) , current (the 8-independent component of the stress ten-
1 . B (3.175) sor 7). We shall see later on that it is, however, all we
Ilgn=— 5 fMdzg\/g X S +X, " Sgn) s need. '

We are now in a position to express the general super-
and the ghost supercurrent that is the 6-independent string amplitude to A-loop order (A >2) as an integral
piece of the super stress tensor T, of Eq. (3.148) is given  over supermoduli, formulated in components

| v

Vil - Vot )= [, dPm [ D eabeBy) TL | o [ BY 17T 18py | B2V ihy) == Vylkyde ™
& k © b

(3.178)

f
where I =1, +1,, is the total action in components and perghosts. Hence the amplitude (3.178) exactly as in Eq.
B =f3+6b. (3.174) is “chirally split” in terms of the chiral ghost
fields bcBy and bcB7 in the sense that there is no cou-
1. Chiral splitting of the matter integrals pling between the opposite chiralities of these fields. This
: will be a crucial property in defining both the heterotic
In Sec. ILB, we have seen that physical vertex opera-  and type-II strings and will manifest itself under the form
tors (for bosonic particles) do not depend on ghosts or su- of superholomorphic factorization, as we shall see in Sec.
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VII. However, it is clear that this chiral factorization
does not manifestly hold for the matter part. Of course,
this could not have been expected in the first place, since
the x field is real and not chiral. Furthermore, the term
I2, bilinear in X, couples 3 4+ to 1_ and seems to spoil
chirality. One of the main tasks of this section will be to
formulate a modified version of chiral splitting which
holds for the full amplitude.

To display chiral splitting of the matter part of the
functional integrals, one must integrate out the x field in
any amplitude. For simplicity we shall not consider full
vertex operators, but just insert the universal factors ek X
required by translation invariance, located at different
points on the surface. This may be thought of as a ta-
chyon operator whose position is not yet integrated over.
It is only technically harder to deal with the insertion of
full vertex operators. In Wess-Zumino gauge where auxi-
liary fields have been integrated out, we have

ikX(2) _ gikox(z), K004 (2) k-0 _(2)

e (3.179)

It is clear that the dependence on ¢ and ¥_ is already
chirally split, so we shall deal with it later on. Notice
that the second and third exponentials on the right-hand
side are complex conjugates of one another only when k#
is purely imaginary. Of course, physically k* is rather a
real vector, but we shall also see later on that from
several points of view k# should be analytically contin-
ued to imaginary values.

Thus we are ultimately interested in the integral

A, fDx I’ll lk“x”(z) —I -1l -1 ,

i=1

(3.180)

leaving the Dirac fermion . integrals for later. We
have, however, included the I ,f, term here, because it will

naturally cancel some of the x integrals. The Green’s
function for the x field is
CGzyw)={x(2)x(w)) , (3.181)

which is, however, not Weyl invariant as explained in
Sec. II.G, and it is appropriate to define the Weyl-
invariant combination F(z,w),

—InF(z,w)= G{z,w)+ +Inp(z) + Linp(w)
—1Gr(z,2)—1Gr(w,w) . (3.182)
Furthermore, recall that F(z,w) has a very simple
decomposition,
InF(z,w)=In| E(z,w)|?

—ZWImfwwI(ImQ)I'JIImfwa R (3.183)
where E(z,w) is the prime form and Q;; the period ma-
trix.

The Gaussian integral is now easily performed, and
one gets '

8mdet’A
dvg
fM Evg

-5
A, =(27)'%8(k) KO AH

(3.184)
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where

ﬁoz—%z,k,“k}‘<x(z x(z;)) ,
ij

F=—iF kM xMz)I} ), (3.185)

F=2(ILIL )~ T2

The next step is to single out the ingredients that are
not manifestly split. They will be expressed in terms of
correlation functions of the field o# where??

‘,‘=—fdzz)(_+(z)¢“ (3.186)

COI(Z) .

Thus we find, using Eq. (3.182) and momentum conserva-
tion,

Zi Z,
FO=L0 +.L° +277'2 kl”kj’»‘ImfP a),(ImQ),‘,IImfPJwJ ,
ij
. z;
H=L, +L_ —4ri ImoH(ImQ);' 'S k,f‘ImfP wy

(3.187)
H'=L' +L" —2rIme(ImQ);; ' Imot ,
where P is an arbitrary point on the worldsheet. The

combinations L%, L, and L', depend analytically on
the z; and on £; and involve only the chiral fields y#,

= 3 kFkPInE (z,,2)) (3.188)

i<j

and

= Sk A2 X, @ (29, InE (2,7,)
i=1 ,

(3.189)
Jd% [ dPwx, p, 2x; o, (w)

L =—
+ 3272

X 3,0,InE (z,w) .

In practice, the expression exp(.L% +.L  +.L’,) can be
viewed as resulting from contractions of an effectively
chiral field x | (z) with effective propagator

(x (2)x  (w))=—mE(zw), (3.190)
so that
—I! yikHxH (z,
exp(LY +.L, 4L )= (e mTEREY (5 g0y

Finally, £°, £ _, and .L'_ are the complex conjugates
of L%, £, and L', with the understanding that kf* is
taken to be purely imaginary.

Returning to Eq. (3.184), the amplitude A,
rewritten as

can be

22In the remainder of this section, the lower index on X,* is
now an Einstein index, and repeated I,J,...
summed over.

indices are
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10 8ridet’A -3 and the remaining amplitude A is gotten by collecting
= (2m)"°8(k) [ f d26V'g det ImQ ] the pieces that are not yet manifestly chirally split. For
M later convenience we have rearranged a factor of

Xexp(LE + L0 +L + L' + L _+L A, det ImQ. Thus A’ is given by

(3.192)
}

A =(det ImQ) Sexp | — 27 |Imo#+i E k“Imf w; [(ImQ)g; (3.193)

i=1

YImo# +i 2 k"Imf w,
Jj=1

We previously indicated a good reason for taking the external momenta purely imaginary. We now see that if kf are
all imaginary, A admits a remarkable representation generalizing the one encountered in Sec. IL.G:
2
ok ti 2 kf‘f o, (3.194)

i=1

f dp§

exp mpi‘ﬂupf‘ +2mpf

Here pf represent the internal loop momenta, and for consistency they have been analytically continued to imaginary
values as well—this has been indicated by the subscript  to the integral. Of course, the 1ntegral would not be conver-
gent, so it should be symbolically understood: the absolute value square is taken with p§' i 1magmary, but to evaluate the
integral one must analytically continue to real pf'.

The combination involving det’A admits a splitting in terms of left- and right-movers on the Riemann surface as well
(up to an anomaly that will ultimately be cancelled, as explained in Secs. VII.A and VII.D),

2 '
8m°det’A = | Za(Q)|*.
J,2°6V% detIm@

(3.195)

Taking this into account, it becomes transparent that the full amplitude—for fixed internal, imaginary momenta pf'—
has been split (or factorized) as a product of an expression involving chiral operators ¥ and holomorphic z; =(z;,6;)
times its complex conjugate.

Jlx=(217)‘°8(k)fsdp}‘%(z,-,1//+,Q,X;p;‘)iv(ii,t[f_,ﬁ,f;pf‘) , . (3.196)

where the operator F, only depends on ¢, z;, and Q and not on ¢ _, Z;, or Q,

gv(zi’¢+’Q’X;Pr)=[ZA(Q)]—IOHE(Z{,Z )k' k*’e'[ L exp

impf Q-+ 2mpf ok +i S k#fpiwl (3.197)
i<j i

In formulating the type-II shperstring, it was necessary to sum separately over the spin structures of left and right
chiralities. This can now be easily achieved by evaluating the expectation value for the ¥, and ¢ _ fields separately on
each chiral component, each with its own spin structure. The two halves may then be brought back together for the
same value of pf* and the p§ integral carried out. Thus the amplitude for different left- and right-spin structures v and v
is a simple generalization of Eq. (3.196),

Ax:(zﬂ)los(k)f%dpf‘ﬂv(z,~,1,b+,9.,)(;pf)57v(ii,¢_,(_),Y;p}‘) . (3.198)

This entirely defines the matter contribution to the type-II superstring amplitudes involving only exponential insertions.
The contributions of higher vertex operator insertions (containing in addition derivatives of x) can be similarly evalu-
ated, and one arrives at an expression like (3.196), with & still chiral, but now also dependent on the derivative inser-
tions. We shall work out the amplitudes for the scattering of massless particles for tree level in Sec. III.L and one-loop
level in Sec. ITI.M.

Next, we must evaluate the amplitude for the full matter contribution, gotten by integrating out the Dirac fermlon
fields ¢ and ¢ _,

— [Dy, Dy_A e ¥ IT explikf0,48 (z)+ikFO9 (z)] , O (3.199)
i=1

where it is understood that ¢# and ¢* are endowed with spin structures v and ¥, respectively. With the help of Eq.
(3.198) we may rewrite this expression,

A, =(2m)%8(k) fsdp}‘@v(z,-,Q,X;p}‘)@v(ii,ﬁ,)?;pf) , (3.200)

where
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Clz;, Q,X;pi)=C [ Z,(Q)] *mHE 2;,2; )' ’exp

i<j

impfQp¥ +277'1sz k”f o5 |
i=1

' (3.201)
_ fDl,b‘liC’_Ier L+ L, n eik'fle u’ru(z ) 2apfalf ]
i=1
When the spin structure is even, there are generically no zero modes to the Dirac operator, and the Dirac propagator
is given by the Szego kernel (Secs. VLLF and VIL.C), .

9Vl wa,n]
E(z,w)3[v](0,Q) ’

which is meromorphic in z and w, and analytic in ). As a consequence, the reduced amplitudes @, of Eq. (3.201) are
analytic functions of z;,(2,, and they depend only on X, .

When the spin structure is odd, there is generically one zero mode 4 ,(z) to the Dirac operator, and the Dirac propa-
gator is not uniquely defined. One choice is to take the propagator orthogonal to the zero mode, which can be achieved
by demanding

S (zyw)=—{Y (2P, (w)),= (3.202)

h (z)Yh (w)
V3S'(z,w)=2m8*z,w) — 2T ————— . (3.203)
(hy|h,) .
Since #,(z) depends holomorphically on Q, S, itself will not be holomorphic in Q. One can define an analytic propaga-
tor, at the expense of letting it transform with the wrong weight, and depend on an arbitrary point y on the Riemann
surface,

S 8,9([v] [f;a),ﬂ ]w,(y)
1

S, (z,w)= .
B W)= ) TS 8790w (0, Qe () (3.204)
I
This propagator obeys
V3S (z,w) =278 z,w) .
Actually, S, can be represented in terms of S,
h,(z) . P eE——
S (z,w)= S, (z, w)+m [ d*p [ d*Q h,(P)h (Q)S,(P,Q)
LfdzPh (P)S,(P, w)+—-h————fd2Ph (P)S,(P,z) (3.205)
Chy|h,) (hy|h,) T '

[
and does not depend on the extra point y any longer. S’ Bose field x _, as shown in Eq. (3.191).. Thus the ampli-
is antisymmetric in z and w, as expected, and orthogonal tude @, becomes
to the zero mode. It is thus appropriate to write

Si(z,w)=—{Y (2P (w)) , : (3.206)

" ik;x | (z;)
where the prime on the fields stands for the fact that ¢ X <H TR > (3.207)
is considered in the space orthogonal to the zero mode. i=1 . o
Whereas for even-spin structure it was straightforward where the reduced amplitude 2, is given by

C,= Z,(Q) Vexp

i
iwp;‘QIJpj‘+2ﬂ'ip}‘k,“fP o }

to show the holomorphicity of @, in z;, Q, and X, for Y no
> ’ v, Tim 2mpfokt kFo. g (z)
odd-spin structures there are several obstacles. First, the R,= f Dy e * e o 11 e WG
Dirac determinant with zero modes removed is no longer i=1
the absolute value. square of a holomorphic function of _ th//+exp [_1¢ + fdzz W zZ) P (2) (3.208)
Q. Second, the Dirac propagator S’ orthogonal to zero +

modes must be used to contract y¥’, and it contains

> and the source 7*(z) is independent of ¥,
nonholomorphic dependences. We now show that a

1

caref}ﬂ treatment actual.ly produces a fully holomorphic n(z)= ~Z—;xf+[azxi (2)—2mpfw,(z)]
amplitude @, for odd-spin structure v. n

It is convenient to recast the contribution +i 3 kf'0,8(z —z;) . (3.209)
L% +L, +.L', in terms of a contraction over the chiral i=1
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We now isolate the zero mode &, of ¥,
h,(2)
(h,|h )12

and ¢'+ is understood to be orthogonal to %, so that the
functional integral simply splits,

Y (2)=h (29’ +¥, (2), A (2)=

0 -1, +(7’|¢,+)
o= [aife " fDye %

=TI {n*|k,)(det' B exp [%f fnS'vn] .
n

The difference between S, and S, consists of terms pro-
portional either to 4 ,(z) or to &, (w). In view of the pre-
factor resulting from the zero-mode integration, such
terms cancel. Furthermore, multilinearity of the same
prefactor allows us to rearrange the normalization factor
ofh,,

det’' D
(h,|h,)

5exp 1%f f’qS,,n] .

(3.210)

R,=TI{n"|h,>
I3

As we shall see in Sec. VII.A, the determinant factor now
precisely contains the correct zero-mode normalization
to make it the absolute value square of a holomorphic
function of Q, and S, itself was of course holomorphic.
Thus we have established full holomorphic splitting of
the amplitudes with exponential insertions for even- and
odd-spin structures.

What happens for full-fledged scattering amplitudes—
say, of massless particles? There are further obstacles in
principle to chiral splitting. Foremost among these is the
fact that the superderivatives that enter the vertex opera-
tor construction themselves involve fields of both chirali-
ties. This can be seen directly from Eq. (3.66), and is ac-
tually already familiar from the study of the superstring
action which involves the chirality-violating term
XX ¢_. Thus the extension to higher vertex operators
of the property of chiral splitting is nontrivial. In the
case of massless external particles, we have checked that
chiral splitting holds in exactly the same way as for sim-
ple exponential insertions, with the additional property
that if £ is the source term to D X and f to D_X, then
there will be holomorphic dependence on ¢ as well. We
shall not reproduce these calculations here, but postpone

to the one-loop case the treatment of amplitudes of mass- .

less bosons and the proof of their chiral and holomorphic
splitting properties. A general proof of these properties
will be given elsewhere (D’Hoker and Phong, 1988a).

2. Spin structure versus space-time parity

It is interesting to examine the space-time character of
the various amplitudes we have evaluated. Clearly, we
have not directly dealt with physical external particles,
but only with exponential insertions, but the observations
listed below in fact easily extend to the case of any type
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of massless external particles, as we shall see more explic-
itly in the case of one loop in Sec. II1.M.

From inspection of Egs. (3.200) and (3.201), it is clear
that the space-time amplitude corresponding to the chiral
half @, with v even, is space-time parity conserving.
External momerita and polarization tensors are contract-
ed only with the metric tensor of space-time—tlie Min-
kowski or Euclidean metric in this case.

On the other hand, from inspection of Egs.
(3.207)-(3.210), we see that to the chiral half @, with v
odd there corresponds an amplitude invariably contain-
ing a ten-dimensional space-time € or completely an-
tisymmetric tensor. It arises directly from the integra-
tion over the Dirac zero modes, which produces the
product of the ten components of a Grassmann-valued
space-time vector,

L ey
II;I (77” ‘ hv)_“ﬁa 77#177#2 1][1]0 ’

with 7,=(7,|h,). All remaining contractions of
space-time indices are done with the ten-dimensional
metric tensor. Thus the chiral amplitude @, for v odd is
space-time parity violating— actually parity odd.

This means that the full amplitudes for the type-11
superstring will be parity conserving if left and right
worldsheet chiralities are endowed with either both
even-spin or both odd-spin structure, and will be parity
violating if the spin structure parities are opposite. Of
course this reasoning has assumed that the vertex opera-
tors themselves do not involve the € symbol, as is indeed
always the case for low enough mass level (m? < 12); if it
is present, the assignments should of course be reversed.

L. Tree-level amplitudes for the type-ll superstring

In this section we present a reasonably complete dis-
cussion of the tree-level calculation of superstring ampli-
tudes. To remain specific, we shall deal with the tree-
level case of the type-II superstring, determine the mea-
sure, factor out the superconformal Killing vector fields,
and evaluate the three and four massless boson scattering
amplitudes.

For h =0, there are six real conformal Killing vectors,
four conformal Killing spinors, and no supermoduli pa-
rameters. The measure must thus be modified to

DE{DQ,,8(T)=(sdet'P;{ P)'/*D'VMDEDL , (3.211)

where the prime on D'V denotes the fact that it is re-
stricted to the complement of the Ker?,. As in the bo-
sonic case, a super Weyl transformation 2 brings out the
following dependence: ’

DE; "D Q,,8(T)= (sdet'P [P,)!/2 !

Vol( Kc:rf)1 )

~58g; (5)

Xe DIDVMDL . (3.212)

Assuming that the correct procedure is to divide by the
factor of sV ="Vol(sDiff) X Vol{sWeyl) X Vol(sU(1)), one
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obtains the formula for the tree-level scattering ampli-
tudes '

(V) -V, (k) =ce 2V (k) -V, (k,)»

1

X, (3.213)
Vol(Ker?,)

where the symbol { )) denotes the fact that the func-
tional integral gver X algne was performed. The deter-
minants of D, D'” and P P, are constants, since there
are no supermoduli, and we denote their effect by c.

1. Superconformal transformations

The next issue we must settle is the volume of Ker‘f’l.
To analyze this, we must write down the invariant
volume element on this space. The superconformal in-
variance group is isomorphic to complexified OSp(1,1)—
the superconformal extension of PSL(2,C) defined in Eq.
(2.106). To see this, we start with homogeneous coordi-
nates (v w ), where latin (greek) variables describe
(anti-commuting) commuting variables. On this triplet,
we have a natural action of GL(2| 1) T: W—TW,

v a b «a
W= |w|, T=|c d B (3.214)
Y y & A4

To make contact with N ==1 superspace, we introduce
the projective coordinates

on which GL(2 | 1) acts by super Mébius transformation:

; ,4z+tbtab yz+8+46 (3.215)
cz +d + 6 cz +d + 0

To obtain a superconformal transformation 7T, we must
transform the line element dz=dz + 6 d 6 into itself up to
a conformal scaling. Equivalently, “the quadratic form”

VW, — 0wy — Y,
Wwiw,

2=z, —2,—6,0,= (3.216)

should transform into itself up to a conformal scaling.
This is uniquely achieved when the orthosymplectic form

0 41 0
K={|{—-1 0 O (3.217)
0 0o 1
is left invariant under T
TTKT =K . (3.218)

Note that the transpose of a matrix T is defined by

a c vy
T7=|b d &/,
—a —B A

so that (TW)T=WTT7, and sdetTT=sdetT. Thus the
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transformations (3.215) with T satisfying (3.218) are su-
perconformal. The weight under which the difference
transforms is easily derived, and we have

212
(czy+d +B0,)cz,+d +58,) °

(3.219)

Tz, —>Z,=

Similarly the line element transforms as

dz
(cz +d +[36)?

and the volume element as

dzNdo

cz+d+B6
Elements in OSp(1,1) are in unique correspondence with
a triplet of points in the superplane (z,,8),(z,,0,),
(z4,0;) obeying one single (Grassmann-valued) con-
straint. The counting works out because OSp(1,1) has
three commuting and two anticommuting parameters.
The constraint is an Osp(l,1)-invariant Grassmann-
valued function, dependent on three points (Aoki, 1988),
given by '

2103+23,0,+2,30,+6,0,0,
A= 172 :

dz—dZ= (3.220)

dzNd6— (3.221)

(3.222)

(z1525323,)

The natural value for A is of course 0, which implies that
one 6 is dependent. With this value for A, it is easy to see
that there is a unique correspondence between triplets of
points satisfying A=0 and elements of OSp(1,1), so that
the latter may be accordingly parametrized.

In particular, the volume element on OSp(1,1) may be
calculated in this fashion. We already know from Egs.
(3.219) and (3.220) that the six-dimensional volume ele-
ment

d21d22d23d61d02d93

/2
(z129323;)

(3.223)

is invariant under OSp(1,1). The invariant volume ele-
ment induced on OSp(1,1) is obtained by multiplying it
by the 8 function of the constraint 8(A)=A:

d21d22d23d91d92d93

172
(212223231)

du (3.224)

2. Evaluation of correlation functions

To calculate the correlation functions of a sequence of
vertex operators, we would need the Green’s function for
the super Laplacian on the sphere. However, the Weyl
invariance of the measure and the correlation functions,
as well as the conservation of momerntum, imply that one
may instead work on the superplane after a stereographic

projection, exactly as in the bosonic case. Here, the
propagator is very simple, ‘
G(z,z')=—In( |z —2z'—660"|24+¢?), (3.225)
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and € is understood to be infinitesimal. The vertex opera-
tors will be described extensively in Sec. VIII. Here we
shall provide an example involving the simplest possible
physical vertex operator: the one for bosonic particles at
zero-mass level k2=0,

Viek)=ge, [ d*2ED X"D_XPe* X,  (3226)
describing the graviton, the antisymmetric tensor field,
and the dilaton. The polarization tensor e”ﬁ is under-
stood to be transverse in k, and the vertex is effectively
normal ordered. To compute correlation functions of
several of these vertices, it is useful to recall a trick
known from the bosonic string. It consists of in'troducing
a source for both X and its derivatives, and then isolating
the correct expansion coefficient when developing in
powers of the source. The key observation is that we
may formally write ijzgufﬁ, where §, and fﬁ are
Grassmann-valued vectors. By linearity of any ampli-
tude in the € ’s, clearly any € L can be written as a for-
mal sum, but we shall not explicitly need this construc-

tion. Once this has been done, we may introduce a gen-
J

(exp [fdzzJ“(z)X”(z)

> (27)'%(k)exp | &

Here the terms with i = j are independent of momenta & and of the coordinates z;.

2 ki -k;G(z;,2;)

l;é_[—dl

eralized vertex

*(&,8,k)

whose £ coefficient is precisely V (g, k). Thus we shall
perform our calculations on V*, introducing a different
set of £C7s for every € of V and selecting the correct term
in the expansion in &’s.

We thus calculate the »n vertex correlation function
starting from the V'* operators,

(V*(&pEnky) - VH(EEnnky))

=g" [d%z, - d’, <expfd2zJ“(z)XM(z)> )

kX +6D X +5D_X

=g [d*zEe . (3.227)

(3.228)

where the source can be read off from the definition of

-V

n

JHz)= E

ik 4+ EED + EHD )8 z,2,) . (3.229)

By completing the square in the expectation value, we get

(3.230)

Their contribution is absorbed into

an overall normalization factor for each vertex, which will be omitted here:

9= 3

ikj=1

For tree-level amplitudes, we work on the superplane and we use the Green’s function of Eq. (3.225).

(with 6,,=6,—6,)

DI

j Gr'j ] ij
D\ Glz;,z;)= -5 DG

ij

(zi,zj):_

o |

>

N

]

DD, G (z;,2))= _% DD Glz,2))=—

e

DD G(z;,2;,)=0, D' D) G(z;,2;)=0

2{;1 é_]‘@‘ QI __

DD 186D DG (z,2;) . (3.231)
J J + J

Thus we have

(3.232)

Actual calculations of the above from Eq. (3.225) would yield addmonal 8(z;,z;) functions, which in the tree-amplitude

calculations disappear in view of analytlclty in the external momenta.?

n

g,= 3

i#j=1

0,
+ik;- §j———+1k gj -
Zij Zij

+ gl §1-+ gz gj

3 Thus we are effectively left with

(3.233)

‘J

We now work out the three-point amplitude first and separate §, as a function of {’s and (g, =95+ 95 ):

Q=i

+k, §2‘_+k2 §1“+k1 §3‘_+k3 §1'_“+k2 §3““+k3 §2

S ity gz—-igl'gsi;—igz'gs‘zi

(2.234)

In evaluating exp($%), one retains terms proportional to §,5,5;; however, the term with three 0’s vanishes because

23This is equivalent to the old argument of the “cancelled propagator.”
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0,080,305, =0. Thus one is left with

N IYS &6 6 0 616 6 0
exp(95)~i | + — k §3 +kyt §3 422 k- §1 . k3’§1'—13“ 222 kl'§2—£+k3'§2_£
212 23 Z13 Z13 Z12 Z23
(3.235)
Using transversality and momentum conservation, we have k,-§3= —k -3, etc., so that
exp(9§)~—zz 207e [§1 G k83(2530,3+23,0,3)+cyclic perm. ] . (3.236)
: 12
Now there is a remarkable identity:
233013+231023=2530,+2310, 421,03+ 0,0,0;,=(21,25325,) ' *A (3.237)
where A was the OSp(1,1)-invariant function introduced in Eq. (3.222). Thus .
UV (e k)W (ks )V (63K 5) ) = 4<2w>*°6(k)fiz—‘-—zii—ziu§“ gaghphehehy g (3.238)
P »m2 »k | 21322323, | 12253 Pupgpy ™ Byl :
where
R gy = MoK vy Mg Koy 0 Ky
(3.239)

10 oz H!L ##
(Plep k) )V (e5k; )V (e3k3)) =4(2m) 08k )ey ey "™ 'K, o Ko

The factors A and A appeared rather magically in the course of the above calculation. Actually, one never needs to
isolate A or A explicitly, provided one makes the following choice for the gauge fixing of the superconformal group:
Zl=0’ 22=1, Zy= 0, 91, 9230, 63=0.

The variable A in this gauge takes on the expression A= — @, so that fixing the superconformal gauge is performed
upon removal of

d*z,d*z,d?0,d%z,d*6,

| 212223231 |

’

the factor of A being taken care of automatically by the 6, integration.
To compute the four-point amplitude, we shall make use of the above gauge from the outset. We choose z =z;,
2,=0,z3=1,z,= 0, 91,92,93:6420, and then have

0, 6, 0,
Gi=i [+k1 §2 +kz §1 +k1 §3 +k3 §1_‘"+k1 §4—+k4 §1"“‘+k2 §3"“+k3 §2

0, 0,
+ky- §4 +k4 §2 +l§1 §2 ‘Hgl §3 +’§1 §4 +l§2 §3 +i&y §4 +1§3 §4 . (3.240)

It is easy to see that exp( 9%) contains no terms with 4k’s because there are only two 0’s. Thus

1
exp(§, 81°6265° §4 . +§1'§3§2‘§4z Zoe +§1‘§4§2'§3214z ;
) 2
61t |l ok GO ey (3.241)
+ le + ——— | 4 perm. | . .
1°62 [k 183k, 42 21372 1°54K2 3212214223 p

In principle, one should now multiply this whole expression by the one involving the £’s, perform the integrals over z
and 6, and regroup terms, clearly a feudal task. The calculation is enormously simplified by the factorization properties
of the Veneziano integrals.

Recall that we have the ordinary integrals

fdz Az (1 )P —z)E_ F(=1—A —B) T+ A)T(1+B)
I(—A4)(—B) TI'(4+B+2)

(3.242)
provided 4 — 4 and B — B are integers, which is always the case in string theory. Using the reciprocity formula for I’
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functions,

H(z2)r(1—z)=

: > (3.243)
sinmwz

and the fact that 4 — 4 and B —B are integers, we see that this expression is actually symmetric under ( 4,B)«( 4,B),
as one might expect from complex conjugation. More importantly, the answer factorizes into a product of factors, each
dependent only on the parameters for either the z or Z coordinates. This product property implies that one need only
consider, say, the z coordinates to find the full amplitude, which by the same token will also completely factorize as a

function of {’s and £’s. An analogous formula is derived for the superintegrals we need:

2

d°z . . _
f #1d292[0102]”[9192]“z{32,Aé(l—zl)B(I—Z,)B=(——2i)1*“(+2i)1*”

I'NN—ad—A—B) I'(1+ A)L(1+B)
I(—A4)'(—B) T(4+B+1+a)

(3.244)

Here a and @ are either O or 1, and the integrals are symmetric under (a 4B)«>(@ AB ) using Eq. (3.243) and the fact that
A —B and A — B are integers. With the help of Eq. (3.244), it is now straightforward to evaluate the four-point func-

tion,

(Ve k) V(e ko)W (e3,ky)V (e4,ky)) =(2m)'%8(k)g* [[d?2,d%0, |2y, | %]z, —1| e

=m(27)'%8(k)g*

Using the abbreviation i for u; to save some writing we have K

95+ 95

I(—s/2)I(—t/2)T(—u/2)

F(14s/2)0(1+2¢/2)T(1+u /2)

€ IT82§83§842K ]234KT§ 37 -
(3.245)

bttty =K 34, and K is then given by

K 1530 = (S1913M24— SUN 4703 — tun13034) — (K Tk 300+ k3K 4113 — K1k 31— K3k 3714)

1 (k3k3mis+k3k i —k3kinsg—kikin,) —

We conclude this subsection by remarking that by su-
perconformal invariance, the zero-, one-, and two-point
functions of the superstring all vanish. The fastest way
of obtaining this result is by remarking that SL(2,C)is a
subgroup of the superconformal group, and that the
respective subgroups leaving 0, 1, or 2 points fixed all
have infinite volume, so that the amplitudes vanish.

M. One-loop amplitudes for the type-Il superstring

To deal with one-loop amplitudes, it is convenient to
return to the component formulation of Sec. III.LK. On
the torus, there are four spin structures, one odd corre-
sponding to periodic X periodic boundary conditions for
all worldsheet spinors, and three even-spin structures,
containing at least one antiperiodic boundary condition.
For even-spin structure, there is one complex modulus
and one complex conformal Killing vector. For odd-spin
structure, there is in addition an odd modulus and a com-
plex conformal Killing spinor. It will be convenient to
represent a spin structure by its corresponding charac-
teristics v=(a,b). Here a and b take the value O or 1 ac-
cording to whether the boundary conditions are an-
tiperiodic or periodic, respectively, about A and B cycles.
Left and right chiralities will be endowed with separate
spin structures v and ¥. Thus it is appropriate to decom-
pose the one-loop amplitude as follows:

(Vi V)= C AV V). (3.247)

vv
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u(kiking+kikin—kikiny,—kikin,)

(3.246)

]

The presence of conformal Killing vectors and spinors re-
quires the insertion of the ghost ¢ and the superghost
8(y,) where y, is the zero mode (for odd-spin structure).
Thus

{ V-V, )W
=fwlarm,(fz)(mpbcm/)jij1 Vel
(3.248)
When v=(1,1) is odd, we have
J,=bc8(By)8(y,) , (3.249)

where f3; and y, are the zero modes of the corresponding
fields. If v is even, on the other hand, the B, and 7,
modes are absent and we have

J,=bc (3.250)

and 75 is the complex conjugate of J,, considered for

spin structure v.

We shall now evaluate this expression for the case of
bosonic vertex operators. In this case, the vertex opera-
tors are independent of the ghosts, and this integral may
be performed separately. Both ghost chiralities may be
integrated over independently, and one recovers the for-
mulas derived earlier. For even-spin structure v

Aqgn= [ D (beBybce e

= —:}det’Vi (detVZ , ), (3.251)
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whereas for odd-spin structure
A ggn= f(I D (beBy )bed(Bo)b(y e e

=det'V® (det'V> | ) ,=1. (3.252)

Here A is a normalization factor for conformal Killing
vectors and spinors, and is given by the area of the
worldsheet: A4 =27,. Unity results in Eq. (3.252) be-
cause the operators V2, and VZ , ,, are identical on the
torus (with Euclidean metric) when both have periodic
boundary conditions.

It is straightforward to evaluate [for these and the
matter determinants (3.257) below, we refer the reader to
Sec. V.A]

%det'VL:%n(T)z ,

and for even-spin structure v

. I[v1(0,7)
(detv_l/z)‘,:%{)r—),r_ .

(3.253)
Notice that the superghost part of the amplitude is in-
dependent of the supermodulus X. Recall indeed that the
Faddeev-Popov operator could be separated into P; and
P, ,, without cross terms (see Sec. IIL.E).

1. Exponential insertions

Next, we evaluate the matter contribution, and again
use the results of Sec. IILLK. Recall that in principle all
vertex insertions for bosonic external particles could be
obtained from the insertion of (unintegrated) exponential
factors. Thus it is best to evaluate these first, since they
are simplest. Consider the amplitude
nikPXMz,0,) —1

€ e

An=[Dxp ] ", (3.254)
i=1

where X*=x*+60¢* +0y" +i66F" and I, is the matter

action in components. It is implicit that left- and right-

spin structures are fixed to be v and ¥. Using the results

of Egs. (3.196) and (3.197), we have

-5

4rridet’ A det'D
= (2 10 k
A, = (27)78(k) (Imr )2 ik |y
det'D _ ’
X (h|h) |5

X f%dpﬂz‘r’;(zi,ei,T;p#)g;(zi,ei,T;p#) , (3.255)

where the reduced chiral amplitude &, is given by
F= HE (2;2; ) kjexp(ivrp"rp“—%i%rp“k}“zi)
<]
Ve ot R
X <e + P2 T explik 00" (z, )]) . (3.256)
i=1

The contribution of .L',, present in Eq. (3.196), vanishes
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for the torus, since there is only one X. Further, when
there are Dirac zero modes (for odd-spin structure), the
last expectation value involves an integral over all of
them. Finally, the determinants of the Dirac operators
are understood to be primed with the zero mode 4 fac-
tored out when the spin structure is odd, and to have no
such modification when the spin structure is even.
We have the explicit formulas

det’A

. 4
(Imry — |1
(detm)V:i’i%o)ﬁ, vee(1,1) (3.257)
det'D ‘ ,
h kY Jon, =M

Considerable - simplification: occurs upon putting the
matter A ,, and ghost A, parts together to obtain the
full amplitude A =A ,,, XA o XA 1!

A= fD(xz/zchy) 11 eik'HX“(z”ei)jvﬁve“l
i=1"
=(2m)'%(k)M M, [ dp"FF, . (3.258)
N
For even-spin structure, we have
4
,=2lG.r (3.259a)
n(T)
whereas for odd-spin structure
M(l,l)=1 . (3-259b)

It remains to evaluate F,. Here again, we distinguish be-
tween even- and odd-spin structure.
For even-spin structure, .£ | and ¢o* vanish, and

" ikHe., (2,)
H e R > ‘
< ¢

i=1 4

=exp [% > kik;6,6,8,(2;,2;) |,
ij

(3.260)

where S, (z,w) is the Dirac propagator, given by the
Szego kernel

vz —w, )30, 7)
v, 7 (z —w,T)

S, (z,w) (3.261)

It may also be useful to recall that the prime form E
takes on a simple form for the torus,

iz —w,7)

(3.262)
(0,7)

E(z,w)=

Clearly, it is advantageous to define the “chiral X propa-
gator” in analogy with Eq. (3.190),
G (z,w)=G (z,w)+06,0,S (z,w),
(3.263)
G(z,w)=—InE(z,w) ,

so that
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F,=exp |iptrp" +i2mp* T kl'z; — 3 ki-k;G(z;,2;) | .
i

i<j
(3.264)

Note, however, that E (z,w) is multivalued around B cy-
cles on the surfaces. The full propagator for the X field is
simply related to G,,: .

G (z,w)=(X(2)X(w)) -

=Gv(z,w)+m-——ﬂ~(z —w—z+)?,
27,

(3.265)
and it is well defined on the surface, though no longer
meromorphic. The last term arises because of the x zero
mode. No analogous terms arise for the Dirac propaga-
tor because for the even-spin structure there are no Dirac
zero modes. Notice also that since the auxiliary field F*
in X* has been set to zero from the outset, we do not pick
up a 8-function contribution to the propagator. Analyti-
city in the external momenta justifies dropping such
terms, as long as the propagator is evaluated between
vertex operators, as will always be the case here.

For odd-spin structure, .L, and ¢ do contribute;
however, since they are linear in X, each of them can only
be contracted with the exponential insertion. The ¥
propagator S, orthogonal to the constant-zero mode of
D, is given by

§0(z,w)=S0(z,w)—Tl(z —w—Z+®),

’ (3.266)
iz —w,T)
Solzw)= H(z —w, )
Here we have abbreviated the odd-spin structure by
0=(1,1). Itis easy to see that this is a well-defined func-
tion on the torus. The full propagator for odd-spin struc-
ture is then given by

G(l,l)(Z,W)= (X(Z)X(W)>
= Gylz,w)+Gylz,w)

——;—zu “w-—Z+w—6,0,+06,0,),

where
Golz,w)=G (z,w)+06,0,S,(z,w) .

2. Modular invariance

We now discuss the coefficients C _ occurring in the
summation over spin structures. G _ is manifestly modu-
lar covariant, as may be seen by using Eq. (E5): the only
effect of a modular transformation on G __ is to permute
the spin structure according to the modular group,

G (z—2,00" ;741 ):Gvﬁl(z —2',00';71) ,
(3.267)
ko M0 z—2,00%7) .

T T

G

vv

| =G"ﬁf(

1
-
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where
vi=(a,b +a+1), v =(@,b+a+1),
v,=(b,a), v,={(b,a) (mod 2).

Note that the odd-spin structure is transformed into it-
self. This at once implies that the vertex operator con-
tractions (¥(k,)--¥,(k,}))  are also modular in-
variant in this sense. Modular invariance of the full am-
plitude (¥V;(k,) - - - V,(k,)) will be achieved provided a
choice for C__ is made that is consistent with modular in-
variance. It is easily checked that the measure in Eq.
(3.258) transforms correctly under modular transforma-

tions, except perhaps for a constant phase:
(Vilky) o Vo(k)) 7+1)

=(—=10*V (k) V,(k,))

1
%y —’7'

(Vylky) o Volk))

=(Vy(ky) -+ vn(k,,))vTv;(T) .

Hence modular invariance of the full amplitude requires
the following choice for the constants C _:

1
T C Cu1,0=Cyo,1) »

(3.269)
T—=>7+1, Cy15="Cpom Cuon==Cuoo0 »

(1,owzc(o,1)v’

and this should hold for all v and ¥. Note that, since the
odd-spin structure (1,1) transforms as a singlet under the
modular group, the relative magnitude with even-spin
structures is not fixed by modular invariance. It should
be determined by factorization, in the limit where the
torus degenerates to the sphere.

'3. Three- and four-point amplitudes for massless bosons

Though the prescriptions given above are complete
and explicit, it may be instructive to work things out for
an example. Let us consider scattering amplitudes with
massless external particles only (the graviton, dilaton,
and antisymmetric tensor field). Such operators are pro-
duced by the generating vertex V*({,Z;k) introduced in
Eq. (3.227). As in the case of tree level, the amplitude
(3.228) is expressed through Eqgs. (3.230) and (3.231), but
the propagator is now understood to be G _, of Eq.
(3.265).

For even-spin structure, we consider the chirality-
conserving form first and then split it to obtain the chiral
amplitude. The relevant superderivatives are

DG (2;,2) =TV, G, (z;,2;) + leeju,.—zj_z. +2;),

Z)QZ)J;GV;(zf,zj)=z>f+1)f'+av(zi,z,>+%9 0,, (3.270)

i

DD G (2,z;)= —?7-9,5]- .
2
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Again, we have neglected all 6(zi,zj )’s, because they do
not contribute to the amplitude in view of analyticity in
the external momenta. Thus we may separate G, of Eq.
(3.231) into two chiral parts expressed only in terms of
the chiral propagator G, (and its complex conjugate) and

a mixed part, which we shall call §,,:

Gn—3 2 kik;G (z;,2;)

i£j
=95+85+8,
~ 1 3 ki k(G (2,,2,)+ G (z;,2))],  (3.271)
isj

where the chiral part is given by
95 =21 "iki'gji){ka(zi’zj )~ 3G 'gj:Dl}i)’LGv(anj )]
i£j
(3.272)

and 95 is its complex conjugate (for imaginary kf). The
mixed part can be simplified with the use of rearrange-
ments familiar from Sec. IT1L.K:
5 2w . 2
gn = —7:— [2 [ _Im(gﬂrlel )+1k,f‘Imz,~] .
2 i

Following the derivation of Sec. III.K, we may introduce
the loop momenta p* and write

9
"=(1,) | dp* jrptrpt
e T, fsp | exp[ imptrp
+2mpH(— 1O, +ikfz)]| .
(3.273)

Thus the full amplitude (still for even-spin structure) may
be recast in a familiar form,

(V3 - vE) =m0 (kM M, fsdp“f}’v?v , (3.274)
where
Flz;, k, &, pt)

—exp | impir+2mpH(—£20, +ikbz,)

—1 3 kik;G (2,2 + G5
i#j

(3.275)

Of course this amplitude should now be integrated over
moduli space. .

To evaluate the zero-, one-, two-, three-, four-, and
five-point amplitudes, the above is in fact enough, for
only the even-spin structures contribute to their ampli-
tudes. Indeed, for the odd-spin structure the Dirac
operator has one (chiral) zero mode for each dimension
of space-time d =10; there is thus a total of ten zero

|

modes. Inserting, for example, a massless vertex eats up
two zero modes. However, one fermion mode is also
eaten up by fixing a conformal spinor gauge for the su-
persymmetry operator. One more is produced by the
presence of the supermoduli parameters. All zero modes
must of course be killed, so naively the lowest number of
vertex operator insertions necessary to make the ampli-
tude nonzero is five. However, overall momentum con-
servation implies that this amplitude also vanishes, and
one has to go to six external particles to obtain a nonzero
contribution from the odd-spin structure.

We first show that the zero-, one-, two-, and three-
point functions vanish identically. This fact is based
upon two fundamental observations. For three or fewer
external massless particles, one always has k,—-kj=0 for
all i and j, so that &, only involves €5, which depends on
the derivatives of G, only. These derivatives are given by

DG (2;,2;;7)=0,8,(2;,2;)+0,8,G,(2;,2;) ,
(3.276)
DD, G (2;,2;;7)=—58,(2,,2;)+6,0,8,;3,G (z,,z;) .

The partition function and the one- and two-particle am-
plitudes all vanish simply by the use of the famous Jacobi
identity of (E11) and the assignments of the coefficients
CVV: )

S C;9:(0,7*=0, v=(a,b), ¥=(a,b). (3.277)

For the three-point function one uses, in addition to the
above, the facts that

3 C . 3,(0,7)*D, G,(1,2)D% G (2,3)D° G,(3,1)=0,

. , . (3.278)
S C,.04(0,7)* D% G ,(1,2)D%.G (2,100, G (3,1)=0 ,

which are equivalent—in component language—to the
equations

> Cwﬁab(o,'r)“Sv(z, —z,)8 (29 —245)8 (2;—2;)=0,

. (3.279)
E vaﬂab(o,‘r) SV(ZI 2y )SV(ZZ —2Zy )=0.

All these identities are easily proven with the help of Egs.
(3.277) and (E7’).

The calculation of the four-point function is more in-
volved, and J-function identities are heavily used. There
are three types of terms: those with four factors of k,
those with two factors of k, and those without explicit k’s
at all contracted onto the polarization tensors. Qur first
task is to show that the terms with four factors of k can-
cel after summation over all spin structures. One needs
the following Riemann-type identity:

S C 90,7 DL G (1,i)D% G ,(2,i))D G (3,i;)D% G (4,i,)

=0, 06,0,06, ? C, 94 (0,75 (1,0 1)S,(2,i5)8 (3,i3)S,(4,1,) .
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(3.280)
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To establish this, use the representation (3.276) for the derivatives: terms with four G,’s cancel because of (3.277), terms

with three G,’s due to transversality, and terms with two or one due ta (3.279).

Permutations (1,2,3,4)—>(iy,i,,i3,i4)

which leave one or more points fixed need not be considered, as their contribution cancels due to transversality of the
polarization tensors. The remaining nine permutations cancel in view of the Riemann identity (E7').
Now we calculate the terms with two momenta k; it is useful to take an example. Consider terms arising as the

coefficient of

§1‘§2§3‘ki3§4'k14 »

where i, and i, are different from three and four, respectively. The spin structure sum is then again simplified, with the

help of the Riemann identities, and one finds

3 C . 950,7)D D% G (1,2)D°. G

i<j

— 4
=6, 0, ; C,.9,(0,7)*S,(1,2)S

where the last factor arises from the expansion of the su-
perspace Green’s function. Since we must end up with
four 6’s, the product [J; _; produces only terms with two
@’s, so that the answer will be a linear function of s, ¢, and
u. With some further use of the Riemann identities, one
can evaluate it rather easily, and one finds

G1°8a(t83k Eaky+ubykyaky) .

Upon inspection, one notices that this result is reminis-
cent of the tree-level answer obtained in Eq. (3.246). One
can now easily complete the analysis by checking that the
other terms also have the same form as the tree-level
answer. Thus our final expression for the one-loop four-
point function in the type-II superstring is

(Viepk)) - Viegky)) = g*8(k)A £ Te2e Ve
(3.283)

(3.282)

XK 1234K337

where the reduced amplitude is given by

041=f dzr

Piex: (TZ v —— [ d*z,d%2,d%,d%,

X | FiaFyy | 75| FyaFiy | =172
X | F13F, | 7472 (3.284)

We have used identity (E9) and we have abbreviated
F;;=F(z;z;), where the function F was defined in Eq.
(2.91) or (3.183). Owverall translation invariance on the
torus allows us to integrate over one of the four positions,
so that we may set z, =0 and

—5/2
1 F,Fy, :
A= d?z,d? -
! Zfl(T f 21d%2,d2; F3Fy,
FyF oy -
T , (3.285)
F3Fy,

which agrees with the classic formula derived in the
operator formalism.

Several remarks ate in order here. First, it is remark-
able that the kinematical form for the one-loop amplitude
coincides with that for the tree-level amplitude. Second,
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G,(3,i3)D% G (4,ig) [T [1+k;k;6,0,S,(i,/)]

3,308, (4,i )T,

i<j

(3.281)

T
our calculation of the one-loop four-point amplitude is

perhaps more involved than when it is performed in the
light-cone operator formalism. However, it has to be re-
called that the corresponding calculation in the light-
cone formulation was simple only for graphs with very
few external legs, ultimately becoming unwieldy for
graphs with more than six legs. In our covariant RNS
formulation, the difficulty increases, but only slightly so.

4. Higher-point amplitudes and odd-spin structure

Let us now come back to the case of odd-spin structure
and derive explicit formulas for scattering amplitudes of
massless particles. There are three additional complica-
tions as compared to the even-spin structure case. First,
we have an odd modulus to integrate over (constant X),
second there is a (constant) Dirac zero mode, third since
there is a Dirac zero mode, the chiral amplitude analo-
gous to ¥ (but now with massless vertex insertions) is no
longer holomorphic in 7 and X, but there are mixed
terms. We shall tackle these issues by evaluating the
matter contribution of the path integral with generating
functions for massless operators inserted at points z;,0;,
which we do not integrate over.

We begin with the nonchiral amplitude for odd-spin
structure

A=A g [ D(xy) [T explik X"+ 4D, X+

i=1

+ERD_XMe I . (3.286)

Recall that the superghost contribution was unity for
odd-spin structure: A p=1.

Care has to be taken to include the full superderiva-
tives in this expression, since the X field does not vanish
now. To be specific, if X*=x"+ Oy + Oy +i00F", we
get

D, X =1, +i0F +0(3,x +1x, ¢_)
+00(— X TX, "¢, +1X, 7. x +D,¢,)

(3.287)
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and D_X is its complex conjugate.

Integration over the x field is performed as before, and
we find a complicated expression due to the presence of
several contributions from the vertex. However, there is
a remarkable partial cancellation with the ¢ - and ¢_-
dependent terms in the vertex, which considerably
simplifies the final answer. Some further partial contrac-
tions of fermionic insertions ultimately lead to

2det’ - -0 0 1 i
A= (2m)0(k) [FTIELA | L L2 L () s
(Tz)
L2+ L2
X [ Dy, Dy_e
21 . 2 .
xXexp | — —(Imo*+ikfImz; ) | . (3.288)
T2
We have also used the following abbreviations:
LY =T k;knE(z,z;) ,
i<j
LL = 2[ 6:0;&; -gjaziazl_lnE(z,-,zj)
i<j
_Ziki-gjejazjlnE(z,,zj)] R (3.289)
L£2.=3 | kPO (z)

i
- 717;;',%9{ J d%w X, g4 (093, 8, InE (z;,w)

+ &Pt (2;)

— okl [ AP XA 003, B (2, w)

Note that :.C(i and .,£1+ are independeni of the fermion
field, whereas ,Ci is chiral in the sense used throughout.
We have also defined

1
T R

i

(3.290)

Since X, % is a constant, only the zero mode ¢ of ¥,
contributes to o¥. Notice that the amplitude A is chiral-
ly split in 1, and ¢ _, except for its zero modes. Thus it
is necessary to isolate these zero modes explicitly, which
is achieved by splitting ¥, =v¢ +¢%. The contractions
of the nonzero modes must then be performed with the
propagator S, of Eq. (3.266), which is indeed orthogonal
to constants. One readily finds that

A = (2m)08(k)(Imr)~Set s AL LA HLLALL + L

‘ n 0 pi On
X [ dydye® ] "V T (3.291)
i=1
where we use the abbreviation vf'=ik{'0; +{!'0,,
Z= ~~2T—’T~ [ —Im(£46,) + ik/lmz,
2
+ X T +T4, T Imz P (3.292)

Contraction of the ¥ -dependent terms .,Ci .produces
also a chiral part L3 =1(L2.L? ), where all the ¢ con-
tractions have been carried out with the propagator S,
instead of S,. This function is explicitly given by

"CiZE _%UIHUJFSO(ZI"ZJ )+iv#§?6jxi+ fdzw azjawlnE(zi’w)So(zi’w)

ij

+$U,Hk;fx; J d*w 8, InE (z;,w)S,(z;,w)

The nonmanifestly chiral terms arising in the full con-
traction have been lumped into Z. Now we see that the
amplitude again splits when we introduce the internal

momenta p¥. Putting all these together, we find
A =(2m)%(k) [ " [dy%dy®#,F,,  (3.294)

where the reduced chiral amplitude &, is given by

Fo=exp | LY + LY +.L3 +iwrp?+2mphih
+¢°+"2v,“] , (3.295)
i
where
=S (—£H0, +ikf'z,—X, P vlz,) . (3.296)
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(3.293)

[

Note that the presence of the zero-mode integral ensures
that 3 v} vanishes at all intermediate steps in the deriva-
tion of those formulas. Furthermore, it guarantees that
&, be invariant under overall translations in z;, as it
should.

This answer looks rather complicated, but in fact the
combination of £, LY, and .£L3 can be obtained from a
very simple recipe. Start with the functional integral
(3.286), but instead of using full superderivatives 2, and
D _, rather use the flat superderivatives 8, and d_ alone,
and use the propagators G, and S| instead of the full
propagators. Also ignore all possible complications that
could arise because of zero modes to the various fields.
Thus we can symbolically write
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—Il M kBXHE My X”)
m P TS0 A
[1e

i=1

exp(LO + L', +.L3)= <e

b

(3.297)
where all the fields and propagators are now ‘“‘chiral”
Xt =xt +06y4 ,
3, X1 =y +69,x%
(x (2)x (W) =—InE(z,w)=G(z,w) ,

(Y (20, (w))=3,InE (z,w)=S,y(z,w) .

(3.298)

In fact, one may also introduce a full chiral superfield
propagator, including the effects of the supermodulus

Golz,w)=(X (2)X (W) )
Hiz —w —6,6,,7)

= —ln y
81(0,7)

(3.299)

where F=7—X,%(0,+86,,). The amplitude is then given
by
LY +L + L=

— Sk 4+ EH3L ikl +E4d,)

XG()(Z",Z]') . (3.300)

One-loop amplitudes for four-graviton scattering have
been computed in the operator formalism by Green and
Schwarz (1982) and Schwarz (1982) for the type-II string.
Space-time supersymmetry breaking to one-loop order
was investigated by Rohm (1984). For the heterotic
string, one-loop four-point functions were calculated by
Gross et al. (1986) and Yashikozawa (1986, 1987) for
gauge bosons, Sakai and Tanii (1987) for gravitons, and
Cai and Nunez (1987) for gravitons, gauge bosons, and
antisymmetric tensor fields. The first two works rely on
the operator method, the third on path integrals. Our
present method based on path integrals is mo‘re compli-
cated than the operator method for a small number of
external states (up to six), but it remains tractable as that
number increases.

Issues of modular invariance are addressed by Witten
(1984), Arnaudon et al. (1987), Gliozzi (1987), and
Parkes (1987). Generating functions for anomalies as
modular forms are introduced in Schellekens and Warner
(1986, 1987), Pilch, Schellekens, and Warner (1987), and
Witten (1987). Nonrenormalization theorems were stat-
ed in Martinec (1986) and shown explicitly to apply in
the one-loop case by Tanii (1985, 1986), and Namazie,
Narain, and Sarmidi (1986). The hexagon anomaly was
shown to vanish to one loop in the heterotic string for
gauge groups Spin(32)/Z, and EgXE; by Gross and
Mende (1987a). The “supertheta” function of Eq. (3.299)
also occurs in Freund and Rabin (1988).

Open-string amplitudes to one loop are discussed in
the report of Schwarz (1982) and more recently in
Frampton, Moxhay, and Ng (1985), Clavelli (1986),
Frampton, Kikuchi, and Ng (1986), Burgess (1987), and
Kostelecky, Lechtenfeld, and Samuel (1987)..
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N. Heterotic strings

The heterotic string was constructed by Gross, Har-
vey, Martinec, and Rohm (1985a, 1985b, 1986) as a hy-
brid of one chiral half of the type-II string (say left
chirality) and one half of the closed bosonic string,
compactified on a 16-dimensional torus 7''%. As a string
theory, it lives in ten space-time dimensions, and we may
alternatively regard it as a theory of ten bosonic degrees
of freedom x*, ten Majorana-Weyl worldsheet spinors
i# (left chirality), and a number of fields representing the
internal degrees of freedom. These could be 16 bosonic
(right-chirality) x¢ or, when fermionized, 32 right-
chirality Majorana-Weyl spinors ¥* . It is in terms of the
latter that we had written the heterotic string worldsheet
action of Eq. (3.3). We shall repeat it here for conveni-
ence:

Ly=Iy+1; ,
. N (3.301)
In=r ], 4768 (D.x*Doxt— Doyt

FX, YD x )

where I, is the action for the internal degrees of freedom,

T
L= [ d%VE(—2D4%), a=1,...,32

(3.302a)

when written in fermionic representation, and

—%fMdngEsz"Dix“ a=1,...,16  (3.302b)
when written in bosonic representation, and it is under-
stood that only the chiral halves of the bosonic contribu-
tions are kept. This action exhibits N =1 local super-
symmetry invariance and may be quantized as a super-
gravity theory in its own right. In Sec. III.N.1 we shall
give a brief account of this approach, without entering
into any details. Instead we shall rather study the
heterotic string as a cross breeding of half a type-1I string
and half a (partially) compactified bosonic string. An ad-
vantage of the latter approach is that we can gain direct
information about the torus T'!° or, equivalently, about
the lattice’® A out of which the torus is constructed:
T'®*=R'/A. This second approach will be discussed
more extensively in Sec. III.N.2. Incidentally, it has al-
ready been stressed, when discussing super Weyl
anomalies, that in a worldsheet chirality-nonconserving
theory, super Weyl invariance must cancel for both left
and right chiralities separately. This is equivalent to can-
cellation of super Weyl and local U(1) anomalies of the
whole theory. Clearly, this requires that 16 internal bo-
sons x? or 32 internal Majorana-Weyl fermions ¢¥° be
present, as discussed before, when the critical dimension
is d =10. The structure of the lattice A is at this point

24We shall always assume that A is indeed 16 dimensional.
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left open, and will be narrowed down-—through in-
sistence on modular invariance—to the root lattice of
E; < E; or of Spin(32)/Z,.

1. N=}

supergeometry

N =1 superspace is parametrized by two commuting
coordinates £ and £ and one anticommuting 6, collected
into a supercoordinate zM=(&,£,6). The U(l) frame is
similarly reduced to 4 =(z,Z, + ). Covariant derivatives,
torsion, and curvature are defined as in Egs. (3.7) and
(3.10), but the torsion constraints (3.11) are now restrict-
ed to the 4 =(z,Z, 4+ ). Using the Bianchi identities, one
then has

T+++=T7+A=Tz++=T++z=0’ T,,*=2,

(3.303)
R,=—D,R, , R, =R, =0,
so that all components of the torsion and curvature are
expressible in terms of R, . The transformation laws of
these fields under super-reparametrizations, super Weyl
transformations, and local U(1l) transformations may be
readily obtained by restriction of the N =1 case, and we
shall not rewrite them here.

A difficult feature of the N =1 supergeometry is that
the supercurvature field R, , now has U(1) weight-} and
is anticommuting, so that there is no sense to setting it to
a constant other than zero. In view of the super Gauss-
Bonnet formula analogous to that for N =1 super-
geometry, R, should not vanish whenever X(M)=£0.
Asking R, to be covariantly constant now leads to non-
trivial differential equations. Thus it is not clear in the
case of heterotic geometry how the geometric ideas dis-
cussed in the case of N =1 supergeometry can be imple-
mented; as a matter of fact, it is not clear that they can
be.

The superspace action for the heterotic string is

I= 21; [ d*Ed0(sdetEy D, X DX+ WD W)

(3.304)

where X* is the even superfield X*(£,&;0)=x"40y*
and ¥ is the odd superfield ¥*=¢? +6F% with ¢* the
space-time fermions, ¥ the internal fermions, and F¢ an
auxiliary field.

N =1 supergeometry was investigated by Hull and
Witten (1985), Brooks, Muhammad and Gates (1986),
Gates, Brooks, and Muhammad (1987), Nelson and
Moore (1986), and Evans and Ovrut (1986a, 1986b, 1987).

2. Heterosis

The fundamental idea behind heterosis is that the left-
and right-moving degrees of freedom on the worldsheet
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are described by independent degrees of freedom, sharing
only their common overall momentum. The notion of
left- and right-movers may be understood on a compact
surface with a metric of Euclidean signature as analytic
and antianalytic, or for fermionic degrees of freedom of
course as left and right chirality. Unfortunately, the no-
tions of left- and right-movers or analytic and antianalyt-
ic are defined only when the fields satisfy their equations
of motion. They do not a priori make sense in a function-
al integral formulation where all fields are to be integrat-
ed over. This is especially a problem for the bosonic
fields x* or x ¢ which are real. '

In our discussion of the type-II string, we have already
had to separate left- and right-chirality components in
order to endow them with separate spin structures. We
have actually achieved much more. When loop momenta
p§ are fixed, and for a fixed point in supermoduli space,
the integrand splits as a function that is analytic in the
period matrix (;;, analytic in the positions of the vertex
insertions z;, and dependent only on XZ“L, times its com-
plex conjugate.”® This chiral splitting at fixed internal
momenta will be reconsidered in much more detail in
Sec. VII and identified there with holomorphic splitting
at fixed internal momenta on supermoduli space. The
holomorphic structure of supermoduli space is that intro-
duced in Sec. III.G, and it will be shown in Sec. VII that
Q,; and X, are holomorphic coordinates for supermo-
duli. This holomorphic splitting points to a way of iden-
tifying the contributions of the right-movers in the bo-
sonic x*. In fact, the closed bosonic string amplitudes
could be split in a similar fashion, even though x* is not
a chiral field. Again, at fixed internal momenta, the in-
tegrand is the absolute-value square of a function analytic
in £,; and in the positions of the vertex operator inser-
tions z;. (Of course we will have to check that this kind
of splitting continues to hold when the closed bosonic
string is compactified on a torus 7''6.) The right-movers’
contributions can now be taken to be the antiholomor-
phic factor. The vertex operators (at fixed positions) for
the heterotic string are similarly constructed of half a
type-1I vertex and half a bosonic vertex. Actually, this is
not quite so, because each contains pieces of both chirali-
ty. However, in the end, all pieces can be put together
and split when the internal momenta on the string are
kept fixed. .

Thus the recipe for heterosis will be to take the left
chiral half of the type-II string and the right chiral half
of the bosonic string at the same internal momenta and to
multiply them together and integrate over the internal
momenta.

That this prescription is the correct one is confirmed
by the fact that it alone will reproduce quantized N =1

25Recall that the complex conjugate is in general evaluated for
a different spin structure. Also recall that all momenta—
internal pf and external k#—have been analytically continued
to imaginary values.
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supergravity from the chirally split type-II superstring.
Indeed, the amplitudes for the heterotic geometry may be
gotten by setting X_* —0, so that we can read off from

Eq. (3.196) that an exponential insertion would give
,)4H:(zﬂ)loa(k)fsdp}‘?v(zi,¢+,Q,X;p}‘)

X Biolz;, Uipf 1 Brg(z;, @), (3.309)

where ¥, was defined in Eq. (3.197) and the ten-
dimensional chiral bosonic amplitude is given by
k;k,
Brolz;, Qipf )= Z () Efz;,z;)"
i<j

Xexp | impf'Qpp¥

+2mipikt fp‘w, ] :
(3.306)

The symbols are the same as in the case of the type-II
string analysis of Sec. ITL.K.

We shall now derive an expression for the contribution
to the amplitude B¢ of the internal degrees of freedom.
We begin with the fermionic representation, described by
the action (3.302a). For convenience, we shall consider
its complex conjugate, so as to obtain B4 directly. We
shall also restrict ourselves to considering only insertions
of ¥ and not its derivatives, which is enough for the case
of vertex operators for massless particles. Furthermore,
all 32 fermions 9¥“ are decoupled from one another, so we
shall evaluate the contributions of a single one first, en-
dowed with spin structure v. Actually, the 32 fermions
were understood to be Majorana-Weyl, which is not real-
izable on a worldsheet with Euclidean signature. Thus
we shall pair them two by two and endow these with the
same spin structure. We then have

n
Bl= [ DY """, (3.307)
v i=1
- For even-spin structure, this integral has no zero
modes, and we get

Bl=(detD , ), exp [—{-% > ;S5 z,2;) |, (3.308)
. ij
where S is the Dirac propagator already encountered in
Eq. (3.202) and given by the Szegl kernel. The Dirac
determinant will be evaluated using bosonization

methods in Sec. VII, and we just quote here the answer
from Eq. (7.61):

(detD ) =Z,(Q)"'9[¥](0,Q), (3.309)

very much in analogy with the one-loop formula of Eq.
(3.253).

For odd-spin structure, there is generically one zero-
mode 4, and the chiral Dirac propagator is given by Eq.
(3.206). Thus
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$£= fd1/}0fD¢’e -‘I‘[”exp [2 n'¢0 ] H e"id/(li)
i i=t

= [Emh;(z,-_) (det'D ),

X exp +‘;’277i7]j§a;(zi’zj) , (3.310)
ij
where (det'D , ), is the chiral half of (det'B /{h, | h,)),.
Due to the overall factor linear in 7, ‘§v in the exponen-
tial is equivalent to S_(z,w) of Eq. (3.204) in view of Eq.
(3.205), so that Eq. (3.310) is analytic in z;, 7;, and Q, but
also well defined on the surface.

Now that we have evaluated the contribution of a sin-
gle (complex) fermion, it remains to put the 16 copies to-
gether. This must be done in a modular-invariant
fashion. Recall that in the type-II string one had to sum
independently over the spin structures assigned to left
and right chirality. Each chirality sector was responsible
for a space-time supersymmetry, all by itself, so that the
theory exhibits N =2 supersymmetry. In the heterotic
string, left and right chiralities are very different objects,

and one could sum separately over the spin structures of

left and right chirality, where right chirality now encom-
passes the internal degrees of freedom. One might also
imagine linking the spin structure sum for left and right
chirality. In the latter case, it should be expected that
space-time supersymmetry would be destroyed. This
leaves open a vast class of possibilities, which is narrowed
down by the requirement of modular invariance and spin
statistics. Seiberg and Witten (1986) have argued that
modular invariance requires the fermions ¥° to have the
same spin structure in groups of eight (or four of our
complexified ones). This eight is familiar from the modu-
lar transformation properties of the ¢ function, which al-
ways involves an eighth root of unity. This indeed occurs
when the ¥’s all carry a space-time index. However, in
that case, they describe both bosonic and fermionic
space-time degrees of freedom. Since internal ¥*s should
describe only space-time bosonic degrees of freedom, the
¥®s should actually have the same spin structure in
groups of 16 (or eight of our complexified ones). Hence
the internal degrees of freedom must exhibit a symmetry
that contains SO(16) X SO(16).

When the spin structure of left and right chirality are

~ intertwined in a nontrivial fashion, one will in fact obtain

an SO(16) X SO(16) string that is modular invariant (at
least to one loop) but not supersymmetric. This type of
string theory was investigated by Dixon and Harvey
(1986), Seiberg and Witten (1986), and Alvarez-Gaumé
et al. (1986). Its compactifications were explored by
Ginsparg and Vafa (1987).

On the other hand, if spin structures for left and right
chirality are summed over independently, then N =1 su-
persymmetry is maintained. The general expression for
the internal amplitude is

Bis= I C; 5 (B (B, ) .

"2

(3.311)



988 E. D’Hoker and D. H. Phong: Geometry of string perturbation theory

Under a modular transformation

A B
c D

’

even- and odd-spin structures are mapped into them-
selves, so we may limit our discussion to the even case.
Hence

M (Bie)=[det(CA+D)] ™" T C, ; (B (Bl

~ )
ivVa
~8 1 48/ 1 8
=[det(CQ+D)] _2_ CM*‘VIM“vZ(BV,) (581_,2)
viva
(3.312)
and
C7152=CM"31M—172 (3.313)

for all M. If ¥;5£V,, then let M fix ¥,. This reduces the
modular group from Sp(2h,Z) to Sp(2h —2,Z). This is
enough for us to see that

C,. =C,

5y, =Copy 1 Va7

Since C is symmetric, all off-diagonal elements in C must
be equal. On the other hand, taking v,=V,, we see that
all on-diagonal elements must be equal as well. Thus
there are two independent solutions. All C;IT,2 are equal

for all ¥, and ¥,, and

2
Bie= |3, (BL® ] (3.3142)

or all off-diagonal elements of C vanish, so that
16=23 (B . (3.314b)

v

In the latter case, we see that all s are endowed with
the same spin structure, thus exhibiting Spin(32) symme-
try.

Now let us consider the one-loop partition function
only, and evaluate the above partial amplitudes:

3 (BLP=33(0,7)+35,(0,7) +31,(0,7) .

v

(3.315)

This is a modular form of weight 4. With the help of
Jacobi’s theorem on the number r,(n) of representations
of an integer n as a sum. of four squares r,(n)=8c,(n)
one easily finds that the above sum of three theta func-
tions equals

14240 S o4(n)e'™7, o n)=3 d=,
n d|n

(3.316)

which is the theta function for the root lattice of Eg.
Hence B, is the amplitude for the group EgzXE,, and
Bie for Spin(32)/Z,.

Next we derive an expression for the contribution of
internal degrees of freedom to the same amplitude B¢ in
terms of the bosonic variable x?. When we compactify
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the closed bosonic string on a torus T''6, the x%(z) field is
no longer single valued, but is shifted by a lattice vector
of A as z moves around a homology cycle,

xUyz)=x%2)+T,, T,€A.

We may interpolate T, with the use of a harmonic func-
tion T‘;(z) and introduce a single-valued field y ¢,

xUz)=yUz)4+T(2) .
Hence we can represent the differential dx“ as

dx¥z)=dy*z)+ 3 [mfhf(z)+nfhf(z)], (3.317)
I .

where £ 4 and h® are harmonic (real) one-forms, normal-
ized to

45 AIhJA:‘ ﬁB,h};:‘SH’ ¢ A,hJB: ﬁs,hJAzo :

The vectors mj and nj belong to A and determine the
winding number of the Riemann surface in T'¢. The ac-
tion in a given topological sector is now easily computed,
and one finds

L(x)=L(y)+ %(nf‘—m}éﬁm WImQ) ;5 (nf—Qymf) .

(3.318)

We are now going to make the following assumptions
concerning m; and n; and the lattice they lie on. First,
we assume that m; and n; run throughout the full lattice.
Hence, if A, are the 16 basis vectors generating A, then

a aya -4 aga
m1=m17\,a, n1=n1)ua,

where m[ and nf run over all integers. We shall denote
the lattice metric by g,3=2,*Ag and furthermore restrict
ourselves to lattices for which the volume of the unit cell
is one: detg,z=1. Finally, we assume that the entries of
8,p are integers; since detg 5= 1, this means that g% also
has integer entries. When all the above requirements are
met, then the amplitude

A:fDx"er

i=1

iKfx %z )e -1,

(3.319)

will be Weyl invariant, provided the external momenta
satisfy K?=2 so that the lattice must be even. The lattice
metric g,z can now be viewed as the Cartan matrix of a
Lie algebra, and since g,z is symmetric, the possible Lie
algebras are SO(2n) and E® or products thereof. The am-

plitude A is easily worked out:2¢
6/ 2
1
A=02m)"8(K) [dP} 3 |B s | QPR | L (3.320)
aI,bI 1

Here 87" and 8¢ are half-order characteristics and take
values 0 and 1. The reduced amplitude is given by

26This formula is a special case of toroidal compactifications
considered in collaboration with V. Periwal.



